本篇博客主要内容如下:
目录
项目背景
数据集介绍
模型构建与训练
结果分析
结果对比分析
如何通过垃圾分类管理,最大限度地实现垃圾资源利用,减少垃圾处置量,改善生存环境质量,是当前世界各国共同关注的迫切问题之一。根据国家制定的统一标准,现在生活垃圾被广泛分为四类,分别是可回收物、餐厨垃圾、有害垃圾和其他垃圾。可回收物表示适宜回收和资源利用的垃圾,主要包括废纸、塑料、玻璃、金属和布料五大类,用蓝色垃圾容器收集,通过综合处理回收利用。餐厨垃圾包括剩菜剩饭、骨头、菜根菜叶、果皮等食品类废物,用绿色垃圾容器收集等等。但是随着深度学习技术的发展,为了简单高效地对生活垃圾进行识别分类,本篇文章将实现一种基于卷积神经网络的垃圾分类识别方法。该方法只需要对图像进行简单的预处理,CNN模型便能够自动提取图像特征且池化过程能够减少参数数量,降低计算的复杂度,实验结果表明卷积神经网络,能克服传统图像分类算法的诸多缺点,当然更为复杂的模型等待大家去实验研究,讨论研究Q525894654。但是目前认为采用VGG或者global 池化方式可能效果更好一点。
数据描述:
数据集一共包括四大类垃圾,分别为:其他垃圾,厨余垃圾、可回收垃圾及有害垃圾,并对其四大类进行了细致分类。具体描述如下:
"0": "其他垃圾/一次性快餐盒",
"1": "其他垃圾/污损塑料",
"2": "其他垃圾/烟蒂",
"3": "其他垃圾/牙签",
"4": "其他垃圾/破碎花盆及碟碗",
"5": "其他垃圾/竹筷",
"6": "厨余垃圾/剩饭剩菜",
"7": "厨余垃圾/大骨头",
"8": "厨余垃圾/水果果皮",
"9": "厨余垃圾/水果果肉",
"10": "厨余垃圾/茶叶渣",
"11": "厨余垃圾/菜叶菜根",
"12": "厨余垃圾/蛋壳",
"13": "厨余垃圾/鱼骨",
"14": "可回收物/充电宝",
"15": "可回收物/包",
"16": "可回收物/化妆品瓶",
"17": "可回收物/塑料玩具",
"18": "可回收物/塑料碗盆",
"19": "可回收物/塑料衣架",
"20": "可回收物/快递纸袋",
"21": "可回收物/插头电线",
"22": "可回收物/旧衣服",
"23": "可回收物/易拉罐",
"24": "可回收物/枕头",
"25": "可回收物/毛绒玩具",
"26": "可回收物/洗发水瓶",
"27": "可回收物/玻璃杯",
"28": "可回收物/皮鞋",
"29": "可回收物/砧板",
"30": "可回收物/纸板箱",
"31": "可回收物/调料瓶",
"32": "可回收物/酒瓶",
"33": "可回收物/金属食品罐",
"34": "可回收物/锅",
"35": "可回收物/食用油桶",
"36": "可回收物/饮料瓶",
"37": "有害垃圾/干电池",
"38": "有害垃圾/软膏",
"39": "有害垃圾/过期药物"
数据标签与统计结果:
类别:0 该类别总样本数:469 训练集样本数:375 验证集样本数:94
类别:1 该类别总样本数:471 训练集样本数:376 验证集样本数:95
类别:2 该类别总样本数:440 训练集样本数:352 验证集样本数:88
类别:3 该类别总样本数:150 训练集样本数:120 验证集样本数:30
类别:4 该类别总样本数:458 训练集样本数:366 验证集样本数:92
类别:5 该类别总样本数:413 训练集样本数:330 验证集样本数:83
类别:6 该类别总样本数:463 训练集样本数:370 验证集样本数:93
类别:7 该类别总样本数:422 训练集样本数:337 验证集样本数:85
类别:8 该类别总样本数:455 训练集样本数:364 验证集样本数:91
类别:9 该类别总样本数:482 训练集样本数:385 验证集样本数:97
类别:10 该类别总样本数:474 训练集样本数:379 验证集样本数:95
类别:11 该类别总样本数:806 训练集样本数:644 验证集样本数:162
类别:12 该类别总样本数:450 训练集样本数:360 验证集样本数:90
类别:13 该类别总样本数:466 训练集样本数:372 验证集样本数:94
类别:14 该类别总样本数:448 训练集样本数:358 验证集样本数:90
类别:15 该类别总样本数:514 训练集样本数:411 验证集样本数:103
类别:16 该类别总样本数:459 训练集样本数:367 验证集样本数:92
类别:17 该类别总样本数:740 训练集样本数:592 验证集样本数:148
类别:18 该类别总样本数:462 训练集样本数:369 验证集样本数:93
类别:19 该类别总样本数:491 训练集样本数:392 验证集样本数:99
类别:20 该类别总样本数:284 训练集样本数:227 验证集样本数:57
类别:21 该类别总样本数:825 训练集样本数:660 验证集样本数:165
类别:22 该类别总样本数:452 训练集样本数:361 验证集样本数:91
类别:23 该类别总样本数:415 训练集样本数:332 验证集样本数:83
类别:24 该类别总样本数:424 训练集样本数:339 验证集样本数:85
类别:25 该类别总样本数:781 训练集样本数:624 验证集样本数:157
类别:26 该类别总样本数:464 训练集样本数:371 验证集样本数:93
类别:27 该类别总样本数:623 训练集样本数:498 验证集样本数:125
类别:28 该类别总样本数:485 训练集样本数:388 验证集样本数:97
类别:29 该类别总样本数:479 训练集样本数:383 验证集样本数:96
类别:30 该类别总样本数:388 训练集样本数:310 验证集样本数:78
类别:31 该类别总样本数:496 训练集样本数:396 验证集样本数:100
类别:32 该类别总样本数:376 训练集样本数:300 验证集样本数:76
类别:33 该类别总样本数:373 训练集样本数:298 验证集样本数:75
类别:34 该类别总样本数:517 训练集样本数:413 验证集样本数:104
类别:35 该类别总样本数:443 训练集样本数:354 验证集样本数:89
类别:36 该类别总样本数:297 训练集样本数:237 验证集样本数:60
类别:37 该类别总样本数:380 训练集样本数:304 验证集样本数:76
类别:38 该类别总样本数:445 训练集样本数:356 验证集样本数:89
类别:39 该类别总样本数:487 训练集样本数:389 验证集样本数:98
总类别数:40 总样本数:18967 训练集总样本数:15159 验证集总样本数:3808
模型构建代码:model.py
from keras.models import Sequential
from keras.layers import Dense, Conv2D, Flatten, MaxPooling2D, Dropout, Activation, BatchNormalization
from keras import backend as K
from keras import optimizers, regularizers, Model
from keras.applications import vgg19, densenet
def generate_trashnet_model(input_shape, num_classes):
# create model
model = Sequential()
# add model layers
model.add(Conv2D(96, kernel_size=11, strides=4, activation='relu', input_shape=input_shape))
model.add(MaxPooling2D(pool_size=3, strides=2))
model.add(Conv2D(256, kernel_size=5, strides=1, activation='relu'))
model.add(MaxPooling2D(pool_size=3, strides=2))
model.add(Conv2D(384, kernel_size=3, strides=1, activation='relu'))
model.add(Conv2D(384, kernel_size=3, strides=1, activation='relu'))
model.add(Conv2D(256, kernel_size=3, strides=1, activation='relu'))
model.add(MaxPooling2D(pool_size=3, strides=2))
model.add(Flatten())
model.add(Dropout(0.5))
model.add(Dense(4096))
model.add(Activation(lambda x: K.relu(x, alpha=1e-3)))
model.add(Dropout(0.5))
model.add(Dense(4096))
model.add(Activation(lambda x: K.relu(x, alpha=1e-3)))
model.add(Dense(num_classes, activation="softmax"))
# compile model using accuracy to measure model performance
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
return model
# Generate model using a pretrained architecture substituting the fully connected layer
def generate_transfer_model(input_shape, num_classes):
# imports the pretrained model and discards the fc layer
base_model = densenet.DenseNet121(
include_top=False,
weights='imagenet',
input_tensor=None,
input_shape=input_shape,
pooling='max') #using max global pooling, no flatten required
x = base_model.output
#x = Dense(256, activation="relu")(x)
x = Dense(256, activation="relu", kernel_regularizer=regularizers.l2(0.01))(x)
x = Dropout(0.6)(x)
x = BatchNormalization()(x)
predictions = Dense(num_classes, activation="softmax")(x)
# this is the model we will train
model = Model(inputs=base_model.input, outputs=predictions)
# compile model using accuracy to measure model performance and adam optimizer
optimizer = optimizers.Adam(lr=0.001)
#optimizer = optimizers.SGD(lr=0.0001, momentum=0.9, nesterov=True)
model.compile(optimizer=optimizer, loss='categorical_crossentropy', metrics=['accuracy'])
return model
Total params: 7,302,470
Trainable params: 7,218,310
Non-trainable params: 84,160
模型训练代码:train_test.py
from keras.preprocessing.image import ImageDataGenerator
from keras import backend as K
import matplotlib.pyplot as plt
import numpy as np
from sklearn.metrics import classification_report, confusion_matrix
from model import *
#from google.colab import drive
import tensorflow as tf
import seaborn as sn
import pandas as pd
# parameters
img_width, img_height = 224, 224 # dimensions to which the images will be resized
n_epochs = 10
batch_size = 32
num_classes = 40 # categories of trash
#project_dir = '/cnn/data/'
project_dir = ''
trainset_dir = project_dir + 'dataset-splitted/training-set'
testset_dir = project_dir + 'dataset-splitted/test-set'
load_weights_file = project_dir + 'weights_save_densenet121_val_acc_86.0.h5'
save_weights_file = project_dir + 'weights_save_4.h5'
# this is the augmentation configuration we will use for training
train_datagen = ImageDataGenerator(
rescale=1. / 255,
shear_range=0.2,
zoom_range=0.2,
horizontal_flip=True,
rotation_range=40,
width_shift_range=0.2,
height_shift_range=0.2)
test_datagen = ImageDataGenerator(rescale=1. / 255)
train_generator = train_datagen.flow_from_directory(
trainset_dir,
target_size=(img_width, img_height),
batch_size=batch_size)
test_generator = test_datagen.flow_from_directory(
testset_dir,
target_size=(img_width, img_height),
batch_size=batch_size,
shuffle=False)
if K.image_data_format() == 'channels_first':
input_shape = (3, img_width, img_height)
else:
input_shape = (img_width, img_height, 3)
model = generate_transfer_model(input_shape, num_classes)
def load_weights():
model.load_weights(load_weights_file)
print("Weights loaded")
def fit(n_epochs):
history = model.fit_generator(
train_generator,
steps_per_epoch=len(train_generator),
epochs=n_epochs,
validation_data=test_generator,
validation_steps=len(test_generator))
# list all data in history
print(history.history.keys())
# summarize history for accuracy
plt.plot(history.history['acc'])
plt.plot(history.history['val_acc'])
plt.title('model accuracy')
plt.ylabel('accuracy')
plt.xlabel('epoch')
plt.legend(['train', 'test'], loc='upper left')
plt.show()
# summarize history for loss
plt.plot(history.history['loss'])
plt.plot(history.history['val_loss'])
plt.title('model loss')
plt.ylabel('loss')
plt.xlabel('epoch')
plt.legend(['train', 'test'], loc='upper left')
plt.show()
model.save_weights(save_weights_file)
def print_layers():
for layer in model.layers:
print(layer.name)
print("trainable: " + str(layer.trainable))
print("input_shape: " + str(layer.input_shape))
print("output_shape: " + str(layer.output_shape))
print("_____________")
def print_classification_report():
# Confution Matrix and Classification Report
Y_pred = model.predict_generator(test_generator, len(test_generator))
y_pred = np.argmax(Y_pred, axis=1)
print('Classification Report')
target_names = list(test_generator.class_indices.keys())
print(classification_report(test_generator.classes, y_pred, target_names=target_names))
print('Confusion Matrix')
conf_mat = confusion_matrix(test_generator.classes, y_pred)
df_cm = pd.DataFrame(conf_mat, index=target_names, columns=target_names)
plt.figure(figsize=(10, 7))
sn.heatmap(df_cm, annot=True)
#save keras model and convert it into tflite model
def save_model():
# Save tf.keras model in HDF5 format.
keras_file = "keras_model.h5"
model.save(keras_file)
# Convert to TensorFlow Lite model.
converter = tf.lite.TFLiteConverter.from_keras_model_file(keras_file)
tflite_model = converter.convert()
open("converted_model.tflite", "wb").write(tflite_model)
print("saved")
#print_layers()
load_weights()
#fit(n_epochs)
print_classification_report()
#save_model()
首先构建或者下载好数据集,直接运行train_test.py即可,训练十次左右的准确率与损失函数图像如下:
最终训练次数达到60次左右趋于稳定,准确率可达75%左右。该模型可根据需求更改为四分类问题,只需要修改numclass参数即可。
该方法与传统的机器学习方法SVM相比,训练较慢,但是准确率较高,该数据集上高于6%-9%;