本文首发于个人博客https://kezunlin.me/post/88fbc049/,欢迎阅读最新内容!
keras efficientnet introduction
compared with resnet50, EfficientNet-B4 improves the top-1 accuracy from 76.3% of ResNet-50 to 82.6% ( 6.3%), under similar FLOPS constraint.
The input size used was 224x224 for all models except NASNetLarge (331x331), InceptionV3 (299x299), InceptionResNetV2 (299x299), Xception (299x299),
EfficientNet-B0 (224x224), EfficientNet-B1 (240x240), EfficientNet-B2 (260x260), EfficientNet-B3 (300x300), EfficientNet-B4 (380x380), EfficientNet-B5 (456x456), EfficientNet-B6 (528x528), and EfficientNet-B7 (600x600).
notice
include_top=True
include_top=False
Top-1 |
Top-5 |
10-5 |
Size |
Stem |
References |
|
---|---|---|---|---|---|---|
VGG16 |
28.732 |
9.950 |
8.834 |
138.4M | 14.7M |
[[paper]](https://arxiv.org/abs/1409.1556) [[tf-models]](https://github.com/tensorflow/models/blob/master/research/slim/nets/vgg.py) |
VGG19 |
28.744 |
10.012 |
8.774 |
143.7M | 20.0M |
[[paper]](https://arxiv.org/abs/1409.1556) [[tf-models]](https://github.com/tensorflow/models/blob/master/research/slim/nets/vgg.py) |
ResNet50 |
25.072 |
7.940 |
6.828 |
25.6M |
23.6M |
[[paper]](https://arxiv.org/abs/1512.03385) [[tf-models]](https://github.com/tensorflow/models/blob/master/research/slim/nets/resnet_v1.py) [[torch]](https://github.com/facebook/fb.resnet.torch/blob/master/models/resnet.lua) [[caffe]](https://github.com/KaimingHe/deep-residual-networks/blob/master/prototxt/ResNet-50-deploy.prototxt) |
ResNet101 |
23.580 |
7.214 |
6.092 |
44.7M |
42.7M |
[[paper]](https://arxiv.org/abs/1512.03385) [[tf-models]](https://github.com/tensorflow/models/blob/master/research/slim/nets/resnet_v1.py) [[torch]](https://github.com/facebook/fb.resnet.torch/blob/master/models/resnet.lua) [[caffe]](https://github.com/KaimingHe/deep-residual-networks/blob/master/prototxt/ResNet-101-deploy.prototxt) |
ResNet152 |
23.396 |
6.882 |
5.908 |
60.4M |
58.4M |
[[paper]](https://arxiv.org/abs/1512.03385) [[tf-models]](https://github.com/tensorflow/models/blob/master/research/slim/nets/resnet_v1.py) [[torch]](https://github.com/facebook/fb.resnet.torch/blob/master/models/resnet.lua) [[caffe]](https://github.com/KaimingHe/deep-residual-networks/blob/master/prototxt/ResNet-152-deploy.prototxt) |
ResNet50V2 |
24.040 |
6.966 |
5.896 |
25.6M |
23.6M |
[[paper]](https://arxiv.org/abs/1603.05027) [[tf-models]](https://github.com/tensorflow/models/blob/master/research/slim/nets/resnet_v2.py) [[torch]](https://github.com/facebook/fb.resnet.torch/blob/master/models/preresnet.lua) |
ResNet101V2 |
22.766 |
6.184 |
5.158 |
44.7M |
42.6M |
[[paper]](https://arxiv.org/abs/1603.05027) [[tf-models]](https://github.com/tensorflow/models/blob/master/research/slim/nets/resnet_v2.py) [[torch]](https://github.com/facebook/fb.resnet.torch/blob/master/models/preresnet.lua) |
ResNet152V2 |
21.968 |
5.838 |
4.900 |
60.4M |
58.3M |
[[paper]](https://arxiv.org/abs/1603.05027) [[tf-models]](https://github.com/tensorflow/models/blob/master/research/slim/nets/resnet_v2.py) [[torch]](https://github.com/facebook/fb.resnet.torch/blob/master/models/preresnet.lua) |
ResNeXt50 |
22.260 |
6.190 |
5.410 |
25.1M |
23.0M |
[[paper]](https://arxiv.org/abs/1611.05431) [[torch]](https://github.com/facebookresearch/ResNeXt/blob/master/models/resnext.lua) |
ResNeXt101 |
21.270 |
5.706 |
4.842 |
44.3M |
42.3M |
[[paper]](https://arxiv.org/abs/1611.05431) [[torch]](https://github.com/facebookresearch/ResNeXt/blob/master/models/resnext.lua) |
InceptionV3 |
22.102 |
6.280 |
5.038 |
23.9M |
21.8M |
[[paper]](https://arxiv.org/abs/1512.00567) [[tf-models]](https://github.com/tensorflow/models/blob/master/research/slim/nets/inception_v3.py) |
InceptionResNetV2 | 19.744 |
4.748 |
3.962 |
55.9M |
54.3M |
[[paper]](https://arxiv.org/abs/1602.07261) [[tf-models]](https://github.com/tensorflow/models/blob/master/research/slim/nets/inception_resnet_v2.py) |
Xception |
20.994 |
5.548 |
4.738 |
22.9M |
20.9M |
[[paper]](https://arxiv.org/abs/1610.02357) |
MobileNet(alpha=0.25) |
48.418 |
24.208 |
21.196 |
0.5M |
0.2M |
[[paper]](https://arxiv.org/abs/1704.04861) [[tf-models]](https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet_v1.py) |
MobileNet(alpha=0.50) |
35.708 |
14.376 |
12.180 |
1.3M |
0.8M |
[[paper]](https://arxiv.org/abs/1704.04861) [[tf-models]](https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet_v1.py) |
MobileNet(alpha=0.75) |
31.588 |
11.758 |
9.878 |
2.6M |
1.8M |
[[paper]](https://arxiv.org/abs/1704.04861) [[tf-models]](https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet_v1.py) |
MobileNet(alpha=1.0) |
29.576 |
10.496 |
8.774 |
4.3M |
3.2M |
[[paper]](https://arxiv.org/abs/1704.04861) [[tf-models]](https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet_v1.py) |
MobileNetV2(alpha=0.35) |
39.914 |
17.568 |
15.422 |
1.7M |
0.4M |
[[paper]](https://arxiv.org/abs/1801.04381) [[tf-models]](https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet_v2.py) |
MobileNetV2(alpha=0.50) |
34.806 |
13.938 |
11.976 |
2.0M |
0.7M |
[[paper]](https://arxiv.org/abs/1801.04381) [[tf-models]](https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet_v2.py) |
MobileNetV2(alpha=0.75) |
30.468 |
10.824 |
9.188 |
2.7M |
1.4M |
[[paper]](https://arxiv.org/abs/1801.04381) [[tf-models]](https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet_v2.py) |
MobileNetV2(alpha=1.0) |
28.664 |
9.858 |
8.322 |
3.5M |
2.3M |
[[paper]](https://arxiv.org/abs/1801.04381) [[tf-models]](https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet_v2.py) |
MobileNetV2(alpha=1.3) |
25.320 |
7.878 |
6.728 |
5.4M |
3.8M |
[[paper]](https://arxiv.org/abs/1801.04381) [[tf-models]](https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet_v2.py) |
MobileNetV2(alpha=1.4) |
24.770 |
7.578 |
6.518 |
6.2M |
4.4M |
[[paper]](https://arxiv.org/abs/1801.04381) [[tf-models]](https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet_v2.py) |
DenseNet121 |
25.028 |
7.742 |
6.522 |
8.1M |
7.0M |
[[paper]](https://arxiv.org/abs/1608.06993) [[torch]](https://github.com/liuzhuang13/DenseNet/blob/master/models/densenet.lua) |
DenseNet169 |
23.824 |
6.824 |
5.860 |
14.3M |
12.6M |
[[paper]](https://arxiv.org/abs/1608.06993) [[torch]](https://github.com/liuzhuang13/DenseNet/blob/master/models/densenet.lua) |
DenseNet201 |
22.680 |
6.380 |
5.466 |
20.2M |
18.3M |
[[paper]](https://arxiv.org/abs/1608.06993) [[torch]](https://github.com/liuzhuang13/DenseNet/blob/master/models/densenet.lua) |
NASNetLarge |
17.502 |
3.996 |
3.412 |
93.5M |
84.9M |
[[paper]](https://arxiv.org/abs/1707.07012) [[tf-models]](https://github.com/tensorflow/models/blob/master/research/slim/nets/nasnet/nasnet.py) |
NASNetMobile |
25.634 |
8.146 |
6.758 |
7.7M |
4.3M |
[[paper]](https://arxiv.org/abs/1707.07012) [[tf-models]](https://github.com/tensorflow/models/blob/master/research/slim/nets/nasnet/nasnet.py) |
EfficientNet-B0 |
22.810 |
6.508 |
5.858 |
5.3M |
4.0M |
[[paper]](https://arxiv.org/abs/1905.11946) [[tf-tpu]](https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet) |
EfficientNet-B1 |
20.866 |
5.552 |
5.050 |
7.9M |
6.6M |
[[paper]](https://arxiv.org/abs/1905.11946) [[tf-tpu]](https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet) |
EfficientNet-B2 |
19.820 |
5.054 |
4.538 |
9.2M |
7.8M |
[[paper]](https://arxiv.org/abs/1905.11946) [[tf-tpu]](https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet) |
EfficientNet-B3 |
18.422 |
4.324 |
3.902 |
12.3M |
10.8M |
[[paper]](https://arxiv.org/abs/1905.11946) [[tf-tpu]](https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet) |
EfficientNet-B4 |
17.040 |
3.740 |
3.344 |
19.5M |
17.7M |
[[paper]](https://arxiv.org/abs/1905.11946) [[tf-tpu]](https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet) |
EfficientNet-B5 |
16.298 |
3.290 |
3.114 |
30.6M |
28.5M |
[[paper]](https://arxiv.org/abs/1905.11946) [[tf-tpu]](https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet) |
EfficientNet-B6 |
15.918 |
3.102 |
2.916 |
43.3M |
41.0M |
[[paper]](https://arxiv.org/abs/1905.11946) [[tf-tpu]](https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet) |
EfficientNet-B7 |
15.570 |
3.160 |
2.906 |
66.7M |
64.1M |
[[paper]](https://arxiv.org/abs/1905.11946) [[tf-tpu]](https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet) |