keras EfficientNet介绍,在ImageNet任务上涨点明显 | keras efficientnet introduction

本文首发于个人博客https://kezunlin.me/post/88fbc049/,欢迎阅读最新内容!

keras efficientnet introduction

Guide

About EfficientNet Models

keras EfficientNet介绍,在ImageNet任务上涨点明显 | keras efficientnet introduction_第1张图片keras EfficientNet介绍,在ImageNet任务上涨点明显 | keras efficientnet introduction_第2张图片

compared with resnet50, EfficientNet-B4 improves the top-1 accuracy from 76.3% of ResNet-50 to 82.6% ( 6.3%), under similar FLOPS constraint.

Using Pretrained EfficientNet Checkpoints

keras EfficientNet介绍,在ImageNet任务上涨点明显 | keras efficientnet introduction_第3张图片

Keras Models Performance

  • The top-k errors were obtained using Keras Applications with the TensorFlow backend on the 2012 ILSVRC ImageNet validation set and may slightly differ from the original ones.

The input size used was 224x224 for all models except NASNetLarge (331x331), InceptionV3 (299x299), InceptionResNetV2 (299x299), Xception (299x299),

EfficientNet-B0 (224x224), EfficientNet-B1 (240x240), EfficientNet-B2 (260x260), EfficientNet-B3 (300x300), EfficientNet-B4 (380x380), EfficientNet-B5 (456x456), EfficientNet-B6 (528x528), and EfficientNet-B7 (600x600).

notice

  • Top-1: single center crop, top-1 error
  • Top-5: single center crop, top-5 error
  • 10-5: ten crops (1 center 4 corners and those mirrored ones), top-5 error
  • Size: rounded the number of parameters when include_top=True
  • Stem: rounded the number of parameters when include_top=False

Top-1
Top-5
10-5
Size
Stem
References
VGG16
28.732
9.950
8.834
138.4M 14.7M
[[paper]](https://arxiv.org/abs/1409.1556) [[tf-models]](https://github.com/tensorflow/models/blob/master/research/slim/nets/vgg.py)
VGG19
28.744
10.012
8.774
143.7M 20.0M
[[paper]](https://arxiv.org/abs/1409.1556) [[tf-models]](https://github.com/tensorflow/models/blob/master/research/slim/nets/vgg.py)
ResNet50
25.072
7.940
6.828
25.6M
23.6M
[[paper]](https://arxiv.org/abs/1512.03385) [[tf-models]](https://github.com/tensorflow/models/blob/master/research/slim/nets/resnet_v1.py) [[torch]](https://github.com/facebook/fb.resnet.torch/blob/master/models/resnet.lua) [[caffe]](https://github.com/KaimingHe/deep-residual-networks/blob/master/prototxt/ResNet-50-deploy.prototxt)
ResNet101
23.580
7.214
6.092
44.7M
42.7M
[[paper]](https://arxiv.org/abs/1512.03385) [[tf-models]](https://github.com/tensorflow/models/blob/master/research/slim/nets/resnet_v1.py) [[torch]](https://github.com/facebook/fb.resnet.torch/blob/master/models/resnet.lua) [[caffe]](https://github.com/KaimingHe/deep-residual-networks/blob/master/prototxt/ResNet-101-deploy.prototxt)
ResNet152
23.396
6.882
5.908
60.4M
58.4M
[[paper]](https://arxiv.org/abs/1512.03385) [[tf-models]](https://github.com/tensorflow/models/blob/master/research/slim/nets/resnet_v1.py) [[torch]](https://github.com/facebook/fb.resnet.torch/blob/master/models/resnet.lua) [[caffe]](https://github.com/KaimingHe/deep-residual-networks/blob/master/prototxt/ResNet-152-deploy.prototxt)
ResNet50V2
24.040
6.966
5.896
25.6M
23.6M
[[paper]](https://arxiv.org/abs/1603.05027) [[tf-models]](https://github.com/tensorflow/models/blob/master/research/slim/nets/resnet_v2.py) [[torch]](https://github.com/facebook/fb.resnet.torch/blob/master/models/preresnet.lua)
ResNet101V2
22.766
6.184
5.158
44.7M
42.6M
[[paper]](https://arxiv.org/abs/1603.05027) [[tf-models]](https://github.com/tensorflow/models/blob/master/research/slim/nets/resnet_v2.py) [[torch]](https://github.com/facebook/fb.resnet.torch/blob/master/models/preresnet.lua)
ResNet152V2
21.968
5.838
4.900
60.4M
58.3M
[[paper]](https://arxiv.org/abs/1603.05027) [[tf-models]](https://github.com/tensorflow/models/blob/master/research/slim/nets/resnet_v2.py) [[torch]](https://github.com/facebook/fb.resnet.torch/blob/master/models/preresnet.lua)
ResNeXt50
22.260
6.190
5.410
25.1M
23.0M
[[paper]](https://arxiv.org/abs/1611.05431) [[torch]](https://github.com/facebookresearch/ResNeXt/blob/master/models/resnext.lua)
ResNeXt101
21.270
5.706
4.842
44.3M
42.3M
[[paper]](https://arxiv.org/abs/1611.05431) [[torch]](https://github.com/facebookresearch/ResNeXt/blob/master/models/resnext.lua)
InceptionV3
22.102
6.280
5.038
23.9M
21.8M
[[paper]](https://arxiv.org/abs/1512.00567) [[tf-models]](https://github.com/tensorflow/models/blob/master/research/slim/nets/inception_v3.py)
InceptionResNetV2 19.744
4.748
3.962
55.9M
54.3M
[[paper]](https://arxiv.org/abs/1602.07261) [[tf-models]](https://github.com/tensorflow/models/blob/master/research/slim/nets/inception_resnet_v2.py)
Xception
20.994
5.548
4.738
22.9M
20.9M
[[paper]](https://arxiv.org/abs/1610.02357)
MobileNet(alpha=0.25)
48.418
24.208
21.196
0.5M
0.2M
[[paper]](https://arxiv.org/abs/1704.04861) [[tf-models]](https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet_v1.py)
MobileNet(alpha=0.50)
35.708
14.376
12.180
1.3M
0.8M
[[paper]](https://arxiv.org/abs/1704.04861) [[tf-models]](https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet_v1.py)
MobileNet(alpha=0.75)
31.588
11.758
9.878
2.6M
1.8M
[[paper]](https://arxiv.org/abs/1704.04861) [[tf-models]](https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet_v1.py)
MobileNet(alpha=1.0)
29.576
10.496
8.774
4.3M
3.2M
[[paper]](https://arxiv.org/abs/1704.04861) [[tf-models]](https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet_v1.py)
MobileNetV2(alpha=0.35)
39.914
17.568
15.422
1.7M
0.4M
[[paper]](https://arxiv.org/abs/1801.04381) [[tf-models]](https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet_v2.py)
MobileNetV2(alpha=0.50)
34.806
13.938
11.976
2.0M
0.7M
[[paper]](https://arxiv.org/abs/1801.04381) [[tf-models]](https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet_v2.py)
MobileNetV2(alpha=0.75)
30.468
10.824
9.188
2.7M
1.4M
[[paper]](https://arxiv.org/abs/1801.04381) [[tf-models]](https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet_v2.py)
MobileNetV2(alpha=1.0)
28.664
9.858
8.322
3.5M
2.3M
[[paper]](https://arxiv.org/abs/1801.04381) [[tf-models]](https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet_v2.py)
MobileNetV2(alpha=1.3)
25.320
7.878
6.728
5.4M
3.8M
[[paper]](https://arxiv.org/abs/1801.04381) [[tf-models]](https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet_v2.py)
MobileNetV2(alpha=1.4)
24.770
7.578
6.518
6.2M
4.4M
[[paper]](https://arxiv.org/abs/1801.04381) [[tf-models]](https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet_v2.py)
DenseNet121
25.028
7.742
6.522
8.1M
7.0M
[[paper]](https://arxiv.org/abs/1608.06993) [[torch]](https://github.com/liuzhuang13/DenseNet/blob/master/models/densenet.lua)
DenseNet169
23.824
6.824
5.860
14.3M
12.6M
[[paper]](https://arxiv.org/abs/1608.06993) [[torch]](https://github.com/liuzhuang13/DenseNet/blob/master/models/densenet.lua)
DenseNet201
22.680
6.380
5.466
20.2M
18.3M
[[paper]](https://arxiv.org/abs/1608.06993) [[torch]](https://github.com/liuzhuang13/DenseNet/blob/master/models/densenet.lua)
NASNetLarge
17.502
3.996
3.412
93.5M
84.9M
[[paper]](https://arxiv.org/abs/1707.07012) [[tf-models]](https://github.com/tensorflow/models/blob/master/research/slim/nets/nasnet/nasnet.py)
NASNetMobile
25.634
8.146
6.758
7.7M
4.3M
[[paper]](https://arxiv.org/abs/1707.07012) [[tf-models]](https://github.com/tensorflow/models/blob/master/research/slim/nets/nasnet/nasnet.py)
EfficientNet-B0
22.810
6.508
5.858
5.3M
4.0M
[[paper]](https://arxiv.org/abs/1905.11946) [[tf-tpu]](https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet)
EfficientNet-B1
20.866
5.552
5.050
7.9M
6.6M
[[paper]](https://arxiv.org/abs/1905.11946) [[tf-tpu]](https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet)
EfficientNet-B2
19.820
5.054
4.538
9.2M
7.8M
[[paper]](https://arxiv.org/abs/1905.11946) [[tf-tpu]](https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet)
EfficientNet-B3
18.422
4.324
3.902
12.3M
10.8M
[[paper]](https://arxiv.org/abs/1905.11946) [[tf-tpu]](https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet)
EfficientNet-B4
17.040
3.740
3.344
19.5M
17.7M
[[paper]](https://arxiv.org/abs/1905.11946) [[tf-tpu]](https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet)
EfficientNet-B5
16.298
3.290
3.114
30.6M
28.5M
[[paper]](https://arxiv.org/abs/1905.11946) [[tf-tpu]](https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet)
EfficientNet-B6
15.918
3.102
2.916
43.3M
41.0M
[[paper]](https://arxiv.org/abs/1905.11946) [[tf-tpu]](https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet)
EfficientNet-B7
15.570
3.160
2.906
66.7M
64.1M
[[paper]](https://arxiv.org/abs/1905.11946) [[tf-tpu]](https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet)

Reference

  • tf efficientnet
  • efficientnet keras pre-trained weights
  • Implementation of EfficientNet model. Keras and TensorFlow Keras.

History

  • 20190912: created.

Copyright

  • Post author: kezunlin
  • Post link: https://kezunlin.me/post/88fbc049/
  • Copyright Notice: All articles in this blog are licensed under CC BY-NC-SA 3.0 unless stating additionally.

你可能感兴趣的:(kezunlin.me)