单片机快速开平方的算法

C语言中开平方的算法中要开平方的话,可以在头文件中加#include .然后调sqrt(n);函数即可.但在单片机中要开平方.可以用到下面算法:
算法1:
本算法只采用移位、加减法、判断和循环实现,因为它不需要浮点运算,也不需要乘除运算,因此可以很方便地运用到各种芯片上去。

我们先来看看10进制下是如何手工计算开方的。
先看下面两个算式,

x = 10*p + q (1)
公式(1)左右平方之后得:

x^2 = 100*p^2 + 20pq + q^2 (2)
现在假设我们知道x2和p,希望求出q来,求出了q也就求出了x2的开方x了。
我们把公式(2)改写为如下格式:

q = (x^2 - 100p^2)/(20p+q) (3)
这个算式左右都有q,因此无法直接计算出q来,因此手工的开方算法和手工除法算法一样有一步需要猜值。

我们来一个手工计算的例子:计算1234567890的开方

首先我们把这个数两位两位一组分开,计算出最高位为3。也就是(3)中的p,最下面一行的334为余数,也就是公式(3)中的(x^2 - 100*p^2)近似值

   3    ---------------    | 12 34 56 78 90       9    ---------------    |  3 34  

下面我们要找到一个0-9的数q使它最接近满足公式(3)。我们先把p乘以20写在334左边:

   3  q    ---------------    | 12 34 56 78 90       9    ---------------  6q|  3 34  

我们看到q为5时(60+q*q)的值最接近334,而且不超过334。于是我们得到:

   3  5    ---------------    | 12 34 56 78 90       9    ---------------  65|  3 34    |  3 25    ---------------          9 56  

接下来就是重复上面的步骤了,这里就不再啰嗦了。

这个手工算法其实和10进制关系不大,因此我们可以很容易的把它改为二进制,改为二进制之后,公式(3)就变成了:

q = (x^2 - 4p^2)/(4p+q) (4)
我们来看一个例子,计算100(二进制1100100)的开方:

  1  0  1  0    ---------------    | 1 10 01 00      1    --------------- 100| 0 10     | 0 00     ---------------    |   10 011001|   10 01    ---------------            0 00  

这里每一步不再是把p乘以20了,而是把p乘以4,也就是把p右移两位,而由于q的值只能为0或者1,所以我们只需要判断余数(x^2 - 4p^2)和(4p+1)的大小关系,如果余数大于等于(4*p+q)那么该上一个1,否则该上一个0。

下面给出完成的C语言程序,其中root表示p,rem表示每步计算之后的余数,divisor表示(4p+1),通过a>>30取a的最高 2位,通过a<<=2将计算后的最高2位剔除。其中root的两次<<1相当于4p。程序完全是按照手工计算改写的,应该不难理解。
复制代码
unsigned short sqrt(unsigned long a){
unsigned long rem = 0;
unsigned long root = 0;
unsigned long divisor = 0;
for(int i=0; i<16; i++){
root <<= 1;
rem = ((rem << 2) + (a >> 30));
a <<= 2;
divisor = (root<<1) + 1;
if(divisor <= rem){
rem -= divisor;
root++;
}
}
return (unsigned short)(root);
}

算法2 :单片机开平方的快速算法

因为工作的需要,要在单片机上实现开根号的操作。目前开平方的方法大部分是用牛顿
迭代法。我在查了一些资料以后找到了一个比牛顿迭代法更加快速的方法。不敢独享,介
绍给大家,希望会有些帮助。

1.原理
因为排版的原因,用pow(X,Y)表示X的Y次幂,用B[0],B[1],…,B[m-1]表示一个序列,
其中[x]为下标。

假设:
B[x],b[x]都是二进制序列,取值0或1。
M = B[m-1]*pow(2,m-1) + B[m-2]*pow(2,m-2) + … + B[1]*pow(2,1) + B[0]*pow
(2,0)
N = b[n-1]*pow(2,n-1) + b[n-2]*pow(2,n-2) + … + b[1]*pow(2,1) + n[0]*pow
(2,0)
pow(N,2) = M

(1) N的最高位b[n-1]可以根据M的最高位B[m-1]直接求得。
设 m 已知,因为 pow(2, m-1) <= M <= pow(2, m),所以 pow(2, (m-1)/2) <= N <=
pow(2, m/2)
如果 m 是奇数,设m=2*k+1,
那么 pow(2,k) <= N < pow(2, 1/2+k) < pow(2, k+1),
n-1=k, n=k+1=(m+1)/2
如果 m 是偶数,设m=2k,
那么 pow(2,k) > N >= pow(2, k-1/2) > pow(2, k-1),
n-1=k-1,n=k=m/2
所以b[n-1]完全由B[m-1]决定。
余数 M[1] = M - b[n-1]pow(2, 2n-2)

(2) N的次高位b[n-2]可以采用试探法来确定。
因为b[n-1]=1,假设b[n-2]=1,则 pow(b[n-1]*pow(2,n-1) + b[n-1]pow(2,n-2),
2) = b[n-1]pow(2,2n-2) + (b[n-1]pow(2,2n-2) + b[n-2]pow(2,2n-4)),
然后比较余数M[1]是否大于等于 (pow(2,2)b[n-1] + b[n-2]) * pow(2,2n-4)。这种
比较只须根据B[m-1]、B[m-2]、…、B[2
n-4]便可做出判断,其余低位不做比较。
若 M[1] >= (pow(2,2)b[n-1] + b[n-2]) * pow(2,2n-4), 则假设有效,b[n-2] =
1;
余数 M[2] = M[1] - pow(pow(2,n-1)*b[n-1] + pow(2,n-2)*b[n-2], 2) = M[1] -
(pow(2,2)+1)pow(2,2n-4);
若 M[1] < (pow(2,2)b[n-1] + b[n-2]) * pow(2,2n-4), 则假设无效,b[n-2] =
0;余数 M[2] = M[1]。

(3) 同理,可以从高位到低位逐位求出M的平方根N的各位。

使用这种算法计算32位数的平方根时最多只须比较16次,而且每次比较时不必把M的各位逐
一比较,尤其是开始时比较的位数很少,所以消耗的时间远低于牛顿迭代法。

  1. 实现代码
    这里给出实现32位无符号整数开方得到16位无符号整数的C语言代码。

/******/
/Function: 开根号处理 /
/入口参数:被开方数,长整型 /
/出口参数:开方结果,整型 /
/
/
unsigned int sqrt_16(unsigned long M)
{
unsigned int N, i;
unsigned long tmp, ttp; // 结果、循环计数
if (M == 0) // 被开方数,开方结果也为0
return 0;

N = 0;  

tmp = (M >> 30);          // 获取最高位:B[m-1]  
M <<= 2;  
if (tmp > 1)              // 最高位为1  
{  
    N ++;                 // 结果当前位为1,否则为默认的0  
    tmp -= N;  
}  

for (i=15; i>0; i--)      // 求剩余的15位  
{  
    N <<= 1;              // 左移一位  

    tmp <<= 2;  
    tmp += (M >> 30);     // 假设  

    ttp = N;  
    ttp = (ttp<<1)+1;  

    M <<= 2;  
    if (tmp >= ttp)       // 假设成立  
    {  
        tmp -= ttp;  
        N ++;  
    }  

}  

return N;  

}

以上网络查找的资料,可能有些晦涩难懂,不过在实际运用中可以参考使用这些算法。

你可能感兴趣的:(单片机,编程,马达控制算法,单片机,算法)