ConcurrnetHashMap是J.U.C包里面提供的一个线程安全并且高效的HashMap,所以ConcurrentHashMap在并发编程的场景中使用的频率比较高。ConcurrentHashMap是Map的派生类,API基本和HashMap类似,主要就是get、put这些方法。接下来基于ConcurrentHashMap的put操作来分析ConcurrentHashMap的源码实现。
JDK 1.7和JDK 1.8的区别
ConcurrentHashMap 和 HashMap 的实现原理是差不多的,但是因为 ConcurrentHashMap 需要支持并发操作,所以在实现上要比 hashmap 稍微复杂一些。
在 JDK1.7 的实现上, ConrruentHashMap 由一个个 Segment 组成,简单来说, ConcurrentHashMap 是一个 Segment 数组,它通过继承 ReentrantLock 来进行加锁,通过每次锁住一个 segment 来保证每个 segment 内的操作的线程安全性从而实现全局线程安全。整个结构图如下
当每个操作分布在不同的 segment 上的时候,默认情况下,理论上可以同时支持 16 个线程的并发写入。
相比于 1.7 版本,它做了两个改进:
put 方法第一阶段
public V put(K key, V value) {
return putVal(key, value, false);
}
final V putVal(K key, V value, boolean onlyIfAbsent) {
if (key == null || value == null) throw new NullPointerException();
int hash = spread(key.hashCode()); // 计算hash值
int binCount = 0; // 用来记录链表长度
for (Node[] tab = table;;) { // 这里就是自旋操作,当出现线程竞争时不断自旋
Node f; int n, i, fh;
if (tab == null || (n = tab.length) == 0) // 如果数组为空,则进行数组初始化
tab = initTable();
// 通过hash值对应的数组下标得到第一个节点;以volatile读的方式来读取table数组中的元素,保证每次拿到的数据都是最新的
else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
// 如果该下标返回的节点为空,则直接通过CAS操作将新值封装成Node插入即可;如果CAS失败,说明存在竞争,则进入下一次循环
if (casTabAt(tab, i, null,
new Node(hash, key, value, null)))
break; // no lock when adding to empty bin
}
..... // 省略部分代码
}
addCount(1L, binCount);
return null;
}
假如在上面这段代码中存在两个线程,在不加锁的情况下:线程 A 成功执行 casTabAt 操作后,随后的线程 B 可以通过 tabAt 方法立刻看到 table[i]的改变。原因如下:线程 A 的 casTabAt 操作,具有 volatile 读写相同的内存语义,根据 volatile 的 happens-before 规则:线程 A 的 casTabAt 操作,一定对线程 B 的 tabAt 操作可见
initTable
数组初始化方法,这个方法比较简单,就是初始化一个合适大小的数组 sizeCtl 这个要单独说一下,如果没搞懂这个属性的意义,可能会被搞晕。
这个标志是在 Node 数组初始化或者扩容的时候的一个控制位标识,负数代表正在进行初始化或者扩容操作;
-1 代表正在初始化
-N 代表有 N-1个线程正在进行扩容操作,这里不是简单的理解成 n 个线程,sizeCtl 就是-N,这块后续在讲扩容的时候会说明
0 标识 Node 数组还没有被初始化,正数代表初始化或者下一次扩容的大小
private final Node[] initTable() {
Node[] tab; int sc;
while ((tab = table) == null || tab.length == 0) {
if ((sc = sizeCtl) < 0)
Thread.yield(); // 被其它线程抢占了初始化操作,直接让出CPU时间片段
else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) { // 如果没有被其它线程初始化,直接通过CAS操作将sizeCtl设置成-1,标识当前线程抢到了初始化资源
try {
if ((tab = table) == null || tab.length == 0) {
int n = (sc > 0) ? sc : DEFAULT_CAPACITY; // 如果在构造ConcurrentHashMap的时候传入了初始容量,则使用传入的初始容量,否则使用默认初始容量16
@SuppressWarnings("unchecked")
Node[] nt = (Node[])new Node,?>[n];
table = tab = nt; // 将这个数组赋值给table
sc = n - (n >>> 2); // 设置扩容阈值,实际就是当前容量的0.75倍,这里使用了右移来计算
}
} finally {
sizeCtl = sc; // 将sc赋值给sizeCtl,如果使用默认初始容量,这里的值是12
}
break;
}
}
return tab;
}
put 方法第二阶段
在 putVal 方法执行完成以后,会通过 addCount 来增加 ConcurrentHashMap 中的元素个数,并且还会可能触发扩容操作。这里会有两个非常经典的设计:
addCount
在 putVal 最后调用 addCount 的时候,传递了两个参数,分别是 1 和 binCount(链表长度),看看 addCount 方法里面做了什么操作。
x 表示这次需要在表中增加的元素个数,check 参数表示是否需要进行扩容检查,大于等于 0 都需要进行检查
private final void addCount(long x, int check) {
CounterCell[] as; long b, s;
// 这里会判断counterCells是否为空,如果为空说明目前不存在竞争,就用过CAS操作尝试修改baseCount变量,对这个变量进行原子累加操作(这个操作的意义是:在不存在竞争的情况下,就使用baseCount来维护元素个数)
// 如果CAS操作失败了,说明存在竞争;这时候不能通过baseCount来累加,而是要通过counterCells来维护元素个数
if ((as = counterCells) != null ||
!U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) {
CounterCell a; long v; int m;
boolean uncontended = true; // 是否有冲突标识,默认是没有冲突
// 这里有几个判断:
// 1. 如果计数表为空则直接调用 fullAddCount
// 2. 从计数表中随机取出一个数组的位置为空,直接调用 fullAddCount
// 3. 通过 CAS 修改 CounterCell 随机位置的值,如果修改失败说明出现并发情况(这里又用到了一种巧妙的方法),调用 fullAndCount
// Random 在线程并发的时候会有性能问题以及可能会产生相同的随机数,ThreadLocalRandom.getProbe 可以解决这个问题,并且性能要比 Random
if (as == null || (m = as.length - 1) < 0 ||
(a = as[ThreadLocalRandom.getProbe() & m]) == null ||
!(uncontended =
U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) {
fullAddCount(x, uncontended);
return;
}
if (check <= 1) // 如果链表长度小于等于1,则不需要扩容检查
return;
s = sumCount();
}
.... // 省略部分代码
}
CounterCells的作用
ConcurrentHashMap 是采用 CounterCell 数组来记录元素个数的,像一般的集合记录集合大小,直接定义一个 size 的成员变量即可,当出现改变的时候只要更新这个变量就行。为什么 ConcurrentHashMap 要用这种形式来处理呢?
问题还是处在并发上,ConcurrentHashMap 是并发集合,如果用一个成员变量来统计元素个数的话,为了保证并发情况下共享变量的安全性,势必会需要通过加锁或者自旋来实现,如果竞争比较激烈的情况下,size 的设置上会出现比较大的冲突反而影响了性能,所以在 ConcurrentHashMap 采用了分片的方法来记录大小,具体什么意思,我们来分析下:
private transient volatile int cellsBusy; // 标识当前cell数组是否在初始化或者扩容的CAS标识位
/**
* Table of counter cells. When non-null, size is a power of 2.
*/
private transient volatile CounterCell[] counterCells; // counterCell数组,ConcurrentHashMap的size总数值分别存在每个cell中
/**
* A padded cell for distributing counts. Adapted from LongAdder
* and Striped64. See their internal docs for explanation.
*/
@sun.misc.Contended static final class CounterCell {
volatile long value;
CounterCell(long x) { value = x; }
}
// 看到这段代码就能够明白了,CounterCell 数组的每个元素,都存储一个元素个数,而实际我们调用size 方法就是通过这个循环累加来得到的
// 又是一个设计精华,大家可以借鉴; 有了这个前提,再会过去看 addCount 这个方法,就容易理解一些了
final long sumCount() {
CounterCell[] as = counterCells; CounterCell a;
long sum = baseCount;
if (as != null) {
for (int i = 0; i < as.length; ++i) {
if ((a = as[i]) != null)
sum += a.value;
}
}
return sum;
}
fullAddCount方法
fullAddCount 主要是用来初始化 CounterCell,来记录元素个数,里面包含扩容,初始化等操作
private final void fullAddCount(long x, boolean wasUncontended) {
int h;
if ((h = ThreadLocalRandom.getProbe()) == 0) { // 获取当前线程的probe值,如果为0则初始化当前线程的probe值。probe就是个随机数
ThreadLocalRandom.localInit(); // force initialization
h = ThreadLocalRandom.getProbe();
wasUncontended = true; // 由于重新生成了probe值,未冲突标志位设置成true
}
boolean collide = false; // True if last slot nonempty
for (;;) { // 自旋
CounterCell[] as; CounterCell a; int n; long v;
if ((as = counterCells) != null && (n = as.length) > 0) { // 如果counterCells不为null,说明已经被初始化过了
if ((a = as[(n - 1) & h]) == null) { // 通过与当前线程的probe值求与,获得cells的下标元素;这个和hash表获取索引是一样的
if (cellsBusy == 0) { // cellsBusy=0表示counterCells不在初始化或者扩容状态
CounterCell r = new CounterCell(x); // 构建一个CounterCell,传入元素个数x,这里x=1
if (cellsBusy == 0 &&
U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) { // 通过CAS设置cellBusy标识,防止其他线程来对counterCells并发处理
boolean created = false;
try { // Recheck under lock
CounterCell[] rs; int m, j;
// 将初始化对象r的元素个数放在对应下标的位置
if ((rs = counterCells) != null &&
(m = rs.length) > 0 &&
rs[j = (m - 1) & h] == null) {
rs[j] = r;
created = true;
}
} finally { // 恢复标志位
cellsBusy = 0;
}
if (created) // 创建成功,退出循环
break;
continue; // 说明指定cells下标位置的数据不为空,则进行下一次循环
}
}
collide = false;
}
else if (!wasUncontended) // 说明上一步addCount方法内的CAS失败了
wasUncontended = true; // 设置未冲突标志位,进入下一次自旋
else if (U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x)) // 由于指定下标位置的值不为空,直接CAS操作进行原子累加;如果成功,则直接退出
break;
else if (counterCells != as || n >= NCPU) // 如果已经有其它线程建立了新的counterCells, 并且counterCells的size大于CPU核心数(这里确保线程的并发数不会超过CPU核心数)
collide = false; // 设置当前线程循环失败,不进行扩容
else if (!collide) // 恢复collide状态,标识下次循环会进行扩容
collide = true;
else if (cellsBusy == 0 &&
U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) { // 进入到这一步,说明counterCells数组容量不够,线程竞争较大,所以先设置一个标识,表示正在扩容
try {
if (counterCells == as) {// Expand table unless stale
CounterCell[] rs = new CounterCell[n << 1]; // 扩容一倍
for (int i = 0; i < n; ++i)
rs[i] = as[i];
counterCells = rs;
}
} finally {
cellsBusy = 0; // 恢复标识
}
collide = false;
continue; // Retry with expanded table
}
h = ThreadLocalRandom.advanceProbe(h); // 更新随机数的值
}
else if (cellsBusy == 0 && counterCells == as &&
U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
// 这一步是初始化CounterCells数组,cellsBusy=0表示没有在做初始化,通过CAS更新cellsBusy的值标注当前线程正在做初始化操作
boolean init = false;
try { // Initialize table
if (counterCells == as) {
CounterCell[] rs = new CounterCell[2]; // 初始容量为2
rs[h & 1] = new CounterCell(x); // 将x(元素个数)放到指定的数组下标位置
counterCells = rs; // 赋值给counterCells
init = true; // 设置初始化完成标识
}
} finally {
cellsBusy = 0;
}
if (init)
break;
}
else if (U.compareAndSwapLong(this, BASECOUNT, v = baseCount, v + x)) // 这一步标识线程竞争激烈,其它线程占据着cell数组,直接累加在baseCount变量中
break; // Fall back on using base
}
}
transfer扩容阶段
在上面提到的addCount方法中,我们省略了下面的代码:
判断是否需要扩容,也就是当更新后的键值对总数 s>= 阈值 sizeCtl 时,进行rehash,这里面会有两个逻辑。
private final void addCount(long x, int check) {
.... // 省略部分代码
if (check >= 0) { // 如果binCount >=0,表示需要检查扩容
Node[] tab, nt; int n, sc;
// s表示集合大小,如果集合大小大于等于扩容阈值,并且table不为空,且table的长度小于最大容量则进行扩容
while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&
(n = tab.length) < MAXIMUM_CAPACITY) {
int rs = resizeStamp(n); // 这里是生成一个唯一的扩容戳,后面会介绍这个值的作用
if (sc < 0) { // sc <0,也就是sizeCtl<0,说明已经有其它线程在扩容了
// 下面这5个条件只要有一个条件为true,说明当前线程不能帮助进行此次扩容,直接跳出循环
// sc >>> RESIZE_STAMP_SHIFT!=rs 表示比较高 RESIZE_STAMP_BITS 位生成戳和 rs 是否相等,相同
// sc == rs + 1 表示扩容结束
// sc==rs+MAX_RESIZERS 表示帮助线程线程已经达到最大值了
// nt=nextTable 表示扩容已经结束
// transferIndex<=0 表示所有的 transfer 任务都被领取完了,没有剩余的hash 桶来给自己这个线程来做 transfer
if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
sc == rs + MAX_RESIZERS || (nt = nextTable) == null ||
transferIndex <= 0)
break;
if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1)) // 当前线程尝试帮助扩容,如果CAS成功则调用transfer
transfer(tab, nt);
}
// 如果当前没有在扩容,那么rs肯定是个整数,通过rx<
resizeStamp
这块逻辑要理解起来,也有一点复杂;resizeStamp用来生成一个和扩容有关的扩容戳,具体有什么作用呢?我们基于它的实现来做一下分析:
static final int resizeStamp(int n) {
return Integer.numberOfLeadingZeros(n) | (1 << (RESIZE_STAMP_BITS - 1));
}
Integer.numberOfLeadingZeros 这个方法是返回无符号整数 n 最高位非 0 位前面的 0 的个数;比如 10 的二进制是 0000 0000 0000 0000 0000 0000 0000 1010 那么这个方法返回的值就是 28。
根据 resizeStamp 的运算逻辑,我们来推演一下,假如 n=16,那么 resizeStamp(16)=32796 转化为二进制是
[0000 0000 0000 0000 1000 0000 0001 1100]。接着再来看,当第一个线程尝试进行扩容的时候,会执行下面这段代码:
U.compareAndSwapInt(this, SIZECTL, sc, (rs << RESIZE_STAMP_SHIFT) + 2)
rs 左移 16 位,相当于原本的二进制低位变成了高位 1000 0000 0001 1100 0000 0000 0000 0000;然后再+2 =1000 0000 0001 1100 0000 0000 0000 0000+10=1000 0000 0001 1100 0000 0000 0000 0010
高 16 位代表扩容的标记、低 16 位代表并行扩容的线程数:
高 RESIZE_STAMP_BITS 位 | 低 RESIZE_STAMP_SHIFT 位 |
---|---|
扩容标记 | 并行扩容线程数 |
➢ 这样来存储有什么好处呢?
➢ 第一个线程尝试扩容的时候,为什么是+2
因为 1 表示初始化,2 表示一个线程在执行扩容,而且对 sizeCtl 的操作都是基于位运算的,所以不会关心它本身的数值是多少,只关心它在二进制上的数值,而 sc + 1 会在低 16 位上加 1
transfer()
扩容是ConcurrentHashMap的精华之一,扩容操作的核心在于数据的迁移,在单线程环境下数据的迁移非常简单,无非就是把旧数组中的数据迁移到新的数组;但是ConcurrentHashMap基本上是使用在多线程环境下,在扩容的时候其他线程也可能在添加元素,这时又出发了扩容怎么办呢?可能大家想到的第一个办法是加互斥锁,把转移过程锁住,虽然是可行的解决方案,但是会带来较大的性能开销。因为互斥锁会导致所有访问临界区的线程陷入到阻塞状态,持有锁的线程耗时越长,其他竞争线程就会一直被阻塞,导致吞吐量较低,而且还可能导致死锁。
而ConcurrentHashMap并没有直接加锁,而是采用CASs实现无锁的并发同步策略,最精华的部分是它可以利用多线程来进行协同扩容。
简单来说,它把多个数组当成多个线程间共享的任务队列,然后通过维护一个指针来划分每个线程锁负责的区间,每个线程通过区间逆向便利来实现扩容,一个已经迁移完的bucket会被替换成一个ForwardingNode节点,标记当前bucket已经被其他线程迁移完了,接下来分析一下它的源码实现:
private final void transfer(Node[] tab, Node[] nextTab) {
int n = tab.length, stride;
// 将 n>>>3,相当于n/8,然后除以CPU核心数,如果得到的结果小于16,那么就使用16
// 这里的目的是让每个CPU处理的bucket一样多,避免出现转移任务不均匀的情况,如果桶较少的话,默认一个CPU处理16个桶,也就是说如果长度是16的时候,如果要扩容那只有一个线程来处理
if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
stride = MIN_TRANSFER_STRIDE;
// nextTab未初始化,nextTab是用来扩容的Node数组
if (nextTab == null) { // initiating
try {
@SuppressWarnings("unchecked")
// 新建一个原始table 2被大小的nextTab,也就是32
Node[] nt = (Node[])new Node,?>[n << 1];
nextTab = nt; // 赋值给nextTab
} catch (Throwable ex) { // try to cope with OOME
sizeCtl = Integer.MAX_VALUE; // 扩容失败,sizeCtl使用int的最大值
return;
}
nextTable = nextTab; // 更新成员变量
transferIndex = n;// 更新转移下标,表示转移时的下标
}
int nextn = nextTab.length; // 新tab的长度
// 创建一个fwd节点,表示一个正在被迁移的Node,并且他的hash值为-1(MOVED);也就是前面putVal方法中会有一个判断MOVED的逻辑,它的作用是用来占位,表示原数组中位置i处的节点完成迁移以后,就会在 i 位置放置一个fwd来告诉其他线程这个位置已经处理过了
ForwardingNode fwd = new ForwardingNode(nextTab);
boolean advance = true;
boolean finishing = false; // to ensure sweep before committing nextTab
for (int i = 0, bound = 0;;) {
// 通过 for 自循环处理每个槽位中的链表元素,默认 advace 为真,通过 CAS 设置 transferIndex 属性值,
// 并初始化 i 和 bound 值,i 指当前处理的槽位序号,bound 指需要处理的槽位边界,先处理槽位 15 的节点;
// 这个循环使用 CAS 不断尝试为当前线程分配任务
// 直到分配成功或任务队列已经被全部分配完毕
// 如果当前线程已经被分配过 bucket 区域
// 那么会通过--i 指向下一个待处理 bucket 然后退出该循环
Node f; int fh;
while (advance) {
int nextIndex, nextBound;
//--i 表示下一个待处理的 bucket,如果它>=bound,表示当前线程已经分配过bucket 区域
if (--i >= bound || finishing)
advance = false;
else if ((nextIndex = transferIndex) <= 0) { { // 表示所有 bucket 已经被分配完毕
i = -1;
advance = false;
}
//通过 cas 来修改 TRANSFERINDEX,为当前线程分配任务,处理的节点区间为 (nextBound,nextIndex)->(0,15)
else if (U.compareAndSwapInt
(this, TRANSFERINDEX, nextIndex,
nextBound = (nextIndex > stride ?
nextIndex - stride : 0))) {
bound = nextBound;
i = nextIndex - 1;
advance = false;
}
}
//i<0 说明已经遍历完旧的数组,也就是当前线程已经处理完所有负责的 bucket
if (i < 0 || i >= n || i + n >= nextn) {
int sc;
if (finishing) { // 如果完成了扩容
nextTable = null; // 删除成员变量
table = nextTab; // 更新table数组
sizeCtl = (n << 1) - (n >>> 1); // 更新阈值(32*0.75=24)
return;
}
// sizeCtl 在迁移前会设置为 (rs << RESIZE_STAMP_SHIFT) + 2
// 然后,每增加一个线程参与迁移就会将 sizeCtl 加 1,
// 这里使用 CAS 操作对 sizeCtl 的低 16 位进行减 1,代表做完了属于自己的任务
if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, sc - 1)) {
// 第一个扩容的线程,执行 transfer 方法之前,会设置 sizeCtl =(resizeStamp(n) << RESIZE_STAMP_SHIFT) + 2)
//后续帮其扩容的线程,执行 transfer 方法之前,会设置 sizeCtl = sizeCtl+1 每一个退出 transfer 的方法的线程,
// 退出之前,会设置 sizeCtl = sizeCtl-1那么最后一个线程退出时:
// 必然有sc == (resizeStamp(n) << RESIZE_STAMP_SHIFT) + 2),即 (sc - 2) == resizeStamp(n) << RESIZE_STAMP_SHIFT
// 如果 sc - 2 不等于标识符左移 16 位。如果他们相等了,说明没有线程在帮助他们扩容了。也就是说,扩容结束了
if ((sc - 2) != resizeStamp(n) << RESIZE_STAMP_SHIFT)
return;
// 如果相等,扩容结束了,更新 finising 变量
finishing = advance = true;
i = n; // 再次循环检查一下整张表
}
}
// 如果位置 i 处是空的,没有任何节点,那么放入刚刚初始化的 ForwardingNode 空节点
else if ((f = tabAt(tab, i)) == null)
advance = casTabAt(tab, i, null, fwd);
else if ((fh = f.hash) == MOVED)
// 表示该位置已经完成了迁移,也就是如果线程 A 已经处理过这个节点,那么线程 B 处理这个节点时,hash 值一定为 MOVED
advance = true; // already processed
.... // 省略部分代码
}
}
扩容过程图解
ConcurrentHashMap 支持并发扩容,实现方式是,把 Node 数组进行拆分,让每个线程处理自己的区域,假设 table 数组总长度是 64,默认情况下,那么每个线程可以分到 16 个 bucket。然后每个线程处理的范围,按照倒序来做迁移
通过 for 自循环处理每个槽位中的链表元素,默认 advace 为真,通过 CAS 设置 transferIndex 属性值,并初始化 i 和 bound 值,i 指当前处理的槽位序号,bound 指需要处理的槽位边界,先处理槽位 31 的节点; (bound,i) =(16,31) 从 31 的位置往前推动。
假设这个时候 ThreadA 在进行 transfer,那么逻辑图表示如下:
在当前假设条件下,槽位 15 中没有节点,则通过 CAS 插入在第二步中初始化的 ForwardingNode 节点,用于告诉其它线程该槽位已经处理过了;
sizeCtl 扩容退出机制
在扩容操作 transfer 的第 2414 行,代码如下:
if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, sc - 1)) {
if ((sc - 2) != resizeStamp(n) << RESIZE_STAMP_SHIFT)
return;
finishing = advance = true;
i = n; // recheck before commit
}
每存在一个线程执行完扩容操作,就通过 cas 执行 sc-1。接着判断(sc-2) !=resizeStamp(n) << RESIZE_STAMP_SHIFT ; 如果相等,表示当前为整个扩容操作的 最后一个线程,那么意味着整个扩容操作就结束了;如果不相等,说明还得继续这么做的目的,一方面是防止不同扩容之间出现相同的 sizeCtl,另外一方面,还可以避免 sizeCtl 的 ABA 问题导致的扩容重叠的情况
数据迁移阶段的实现分析
通过分配好迁移的区间之后,开始对数据进行迁移。
synchronized (f) { // 对数组该节点位置加锁,开始处理数组该位置的迁移工作
if (tabAt(tab, i) == f) { // 再做一次校验
Node ln, hn; // ln 表示低位, hn 表示高位;接下来这段代码的作用是把链表拆分成两部分,0 在低位,1 在高位
if (fh >= 0) {
int runBit = fh & n;
Node lastRun = f;
// 遍历当前 bucket 的链表,目的是尽量重用 Node 链表尾部的一部分
for (Node p = f.next; p != null; p = p.next) {
int b = p.hash & n;
if (b != runBit) {
runBit = b;
lastRun = p;
}
}
if (runBit == 0) {
ln = lastRun;
hn = null;
}
else {
hn = lastRun;
ln = null;
}
// 构造高位以及低位的链表
for (Node p = f; p != lastRun; p = p.next) {
int ph = p.hash; K pk = p.key; V pv = p.val;
if ((ph & n) == 0)
ln = new Node(ph, pk, pv, ln);
else
hn = new Node(ph, pk, pv, hn);
}
setTabAt(nextTab, i, ln); // 将低位的链表放在 i 位置也就是不动
setTabAt(nextTab, i + n, hn); //将高位链表放在 i+n 位置
setTabAt(tab, i, fwd); // 把旧 table 的 hash 桶中放置转发节点,表明此 hash 桶已经被处理
advance = true;
}
....//省略红黑树扩容部分代码
}
}
高低位原理分析
ConcurrentHashMap 在做链表迁移时,会用高低位来实现,这里有两个问题要分析一下
假如我们有这样一个队列:
第 14 个槽位插入新节点之后,链表元素个数已经达到了 8,且数组长度为 16,优先通过扩容来缓解链表过长的问题,扩容这块的图解稍后再分析,先分析高低位扩容的原理
假如当前线程正在处理槽位为 14 的节点,它是一个链表结构,在代码中,首先定义两个变量节点 ln 和 hn,实际就是 lowNode 和 HighNode,分别保存 hash 值的第 x 位为 0 和不等于0 的节点
通过 fn&n 可以把这个链表中的元素分为两类,A 类是 hash 值的第 X 位为 0,B 类是 hash 值的第 x 位为不等于 0(至于为什么要这么区分,稍后分析),并且通过 lastRun 记录最后要处理的节点。最终要达到的目的是,A 类的链表保持位置不动,B 类的链表为 14+16(扩容增加的长度)=30
我们把 14 槽位的链表单独伶出来,我们用蓝色表示 fn&n=0 的节点,假如链表的分类是这样
for (Node p = f.next; p != null; p = p.next) {
int b = p.hash & n;
if (b != runBit) {
runBit = b;
lastRun = p;
}
}
通过上面这段代码遍历,会记录 runBit 以及 lastRun,按照上面这个结构,那么 runBit 应该是蓝色节点,lastRun 应该是第 6 个节点
接着,再通过这段代码进行遍历,生成 ln 链以及 hn 链
for (Node p = f; p != lastRun; p = p.next) {
int ph = p.hash; K pk = p.key; V pv = p.val;
if ((ph & n) == 0)
ln = new Node(ph, pk, pv, ln);
else
hn = new Node(ph, pk, pv, hn);
}
接着,通过 CAS 操作,把 hn 链放在 i+n 也就是 14+16 的位置,ln 链保持原来的位置不动。并且设置当前节点为 fwd,表示已经被当前线程迁移完了
setTabAt(nextTab, i, ln);
setTabAt(nextTab, i + n, hn);
setTabAt(tab, i, fwd);
要想了解这么设计的目的,我们需要从 ConcurrentHashMap 的根据下标获取对象的算法来看,在 putVal 方法中 1018 行
else if ((f = tabAt(tab, i = (n - 1) & hash)) == null)
通过(n-1) & hash 来获得在 table 中的数组下标来获取节点数据,【&运算是二进制运算符,1 & 1=1,其他都为 0】
假设我们的 table 长度是 16, 二进制是【0001 0000】,减一以后的二进制是 【0000 1111】假如某个 key 的 hash 值=9,对应的二进制是【0000 1001】,那么按照(n-1) & hash 的算法 0000 1111 & 0000 1001 =0000 1001 , 运算结果是 9
当我们扩容以后,16 变成了 32,那么(n-1)的二进制是 【0001 1111】仍然以 hash 值=9 的二进制计算为例0001 1111 & 0000 1001 =0000 1001 ,运算结果仍然是 9
我们换一个数字,假如某个 key 的 hash 值是 20,对应的二进制是【0001 0100】,仍然按照(n-1) & hash 算法,分别在 16 为长度和 32 位长度下的计算结果
16 位: 0000 1111 & 0001 0100=0000 0100
32 位: 0001 1111 & 0001 0100 =0001 0100
从结果来看,同样一个 hash 值,在扩容前和扩容之后,得到的下标位置是不一样的,这种情况当然是不允许出现的,所以在扩容的时候就需要考虑,而使用高低位的迁移方式,就是解决这个问题。
大家可以看到,16 位的结果到 32 位的结果,正好增加了 16. 比如 20 & 15=4 、20 & 31=20 ; 4-20 =16 比如 60 & 15=12 、60 & 31=28; 12-28=16
所以对于高位,直接增加扩容的长度,当下次 hash 获取数组位置的时候,可以直接定位到对应的位置。这个地方又是一个很巧妙的设计,直接通过高低位分类以后,就使得不需要在每次扩容的时候来重新计算 hash,极大提升了效率。
put 方法第三阶段
如果对应的节点存在,判断这个节点的 hash 是不是等于 MOVED(-1),说明当前节点是 ForwardingNode 节点,意味着有其他线程正在进行扩容,那么当前现在直接帮助它进行扩容,因此调用 helpTransfer 方法:
final Node[] helpTransfer(Node[] tab, Node f) {
Node[] nextTab; int sc;
// // 判断此时是否仍然在执行扩容,nextTab=null 的时候说明扩容已经结束了
if (tab != null && (f instanceof ForwardingNode) &&
(nextTab = ((ForwardingNode)f).nextTable) != null) {
int rs = resizeStamp(tab.length); // 生成扩容戳
while (nextTab == nextTable && table == tab &&
(sc = sizeCtl) < 0) {
// 说明扩容还未完成的情况下不断循环来尝试将当前线程加入到扩容操作中
//下面部分的整个代码表示扩容结束,直接退出循环
//transferIndex<=0 表示所有的 Node 都已经分配了线程
//sc=rs+MAX_RESIZERS 表示扩容线程数达到最大扩容线程数
//sc >>> RESIZE_STAMP_SHIFT !=rs, 如果在同一轮扩容中,那么 sc 无符号右移比较高位和 rs 的值,
// 那么应该是相等的。如果不相等,说明扩容结束了
//sc==rs+1 表示扩容结束
if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
sc == rs + MAX_RESIZERS || transferIndex <= 0)
break;
if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1)) { // 在低 16 位上增加扩容线程数
transfer(tab, nextTab); // 帮助扩容
break;
}
}
return nextTab;
}
return table;
}
put 方法第四阶段
这个方法的主要作用是,如果被添加的节点的位置已经存在节点的时候,需要以链表的方式加入到节点中如果当前节点已经是一颗红黑树,那么就会按照红黑树的规则将当前节点加入到红黑树中
else { // 进入到这个分支,说明 f 是当前 nodes 数组对应位置节点的头节点,并且不为空
V oldVal = null;
synchronized (f) { // 给对应的头结点加锁
if (tabAt(tab, i) == f) { // 再次判断对应下标位置是否为 f 节点
if (fh >= 0) { // 头结点的 hash 值大于 0,说明是链表
binCount = 1; // 用来记录链表的长度
for (Node e = f;; ++binCount) {
K ek;
// 如果发现相同的 key,则判断是否需要进行值的覆盖
if (e.hash == hash &&
((ek = e.key) == key ||
(ek != null && key.equals(ek)))) {
oldVal = e.val;
if (!onlyIfAbsent) // 默认情况下,直接覆盖旧的值
e.val = value;
break;
}
// 一直遍历到链表的最末端,直接把新的值加入到链表的最后面
Node pred = e;
if ((e = e.next) == null) {
pred.next = new Node(hash, key,
value, null);
break;
}
}
}
// 如果当前的 f 节点是一颗红黑树
else if (f instanceof TreeBin) {
Node p;
binCount = 2;
// 则调用红黑树的插入方法插入新的值
if ((p = ((TreeBin)f).putTreeVal(hash, key,
value)) != null) {
oldVal = p.val;
if (!onlyIfAbsent) // 同样,如果值已经存在,则直接替换
p.val = value;
}
}
}
}
if (binCount != 0) { // 说明上面在做链表操作
if (binCount >= TREEIFY_THRESHOLD) // 如果链表长度已经达到临界值 8 就需要把链表转换为树结构
treeifyBin(tab, i);
if (oldVal != null) // 如果 val 是被替换的,则返回替换之前的值
return oldVal;
break;
}
}
判断链表的长度是否已经达到临界值 8. 如果达到了临界值,这个时候会根据当前数组的长度来决定是扩容还是将链表转化为红黑树。也就是说如果当前数组的长度小于 64,就会先扩容。否则,会把当前链表转化为红黑树
treeifyBin
private final void treeifyBin(Node[] tab, int index) {
Node b; int n, sc;
if (tab != null) {
if ((n = tab.length) < MIN_TREEIFY_CAPACITY) // tab 的长度是不是小于 64,如果是,则执行扩容
tryPresize(n << 1); // 这个方法和addCount有些类似
else if ((b = tabAt(tab, index)) != null && b.hash >= 0) { // 否则,将当前链表转化为红黑树结构存储
synchronized (b) {
if (tabAt(tab, index) == b) {
TreeNode hd = null, tl = null;
for (Node e = b; e != null; e = e.next) {
TreeNode p =
new TreeNode(e.hash, e.key, e.val,
null, null);
if ((p.prev = tl) == null)
hd = p;
else
tl.next = p;
tl = p;
}
setTabAt(tab, index, new TreeBin(hd));
}
}
}
}
}