PASCAL VOC数据集分析(语义分割)

原文地址:https://blog.csdn.net/zhangjunbob/article/details/52769381

另一篇参考地址:https://blog.csdn.net/u013832707/article/details/80060327

做深度学习目标检测方面的同学怎么都会接触到PASCAL VOC这个数据集。也许很少用到整个数据集,但是一般都会按照它的格式准备自己的数据集。所以这里就来详细的记录一下PASCAL VOC的格式,包括目录构成以及各个文件夹的内容格式,方便以后自己按照VOC的标准格式制作自己的数据集。
————————————————————————————————————————————————

PASCAL VOC数据集分析

PASCAL VOC为图像识别和分类提供了一整套标准化的优秀的数据集,从2005年到2012年每年都会举行一场图像识别challenge。
本文主要分析PASCAL VOC数据集中和图像中物体识别相关的内容。
在这里采用PASCAL VOC2012作为例子。下载地址为:点击打开链接(http://host.robots.ox.ac.uk/pascal/VOC/voc2012/VOCtrainval_11-May-2012.tar)。(本文中的系统环境为ubuntu14.04)
下载完之后解压,可以在VOCdevkit目录下的VOC2012中看到如下的文件:

其中在图像物体识别上着重需要了解的是Annotations、ImageSets和JPEGImages。

①JPEGImages

JPEGImages文件夹中包含了PASCAL VOC所提供的所有的图片信息,包括了训练图片和测试图片。

这些图像都是以“年份_编号.jpg”格式命名的。
图片的像素尺寸大小不一,但是横向图的尺寸大约在500*375左右,纵向图的尺寸大约在375*500左右,基本不会偏差超过100。(在之后的训练中,第一步就是将这些图片都resize到300*300或是500*500,所有原始图片不能离这个标准过远。)
这些图像就是用来进行训练和测试验证的图像数据。

②Annotations

Annotations文件夹中存放的是xml格式的标签文件,每一个xml文件都对应于JPEGImages文件夹中的一张图片。

xml文件的具体格式如下:(对于2007_000392.jpg)



	VOC2012                           
	2007_000392.jpg                               //文件名
	                                                           //图像来源(不重要)
		The VOC2007 Database
		PASCAL VOC2007
		flickr
	
						                           //图像尺寸(长宽以及通道数)						
		500
		332
		3
	
	1		                           //是否用于分割(在图像物体识别中01无所谓)
	                                                           //检测到的物体
		horse                                         //物体类别
		Right                                         //拍摄角度
		0                                   //是否被截断(0表示完整)
		0                                   //目标是否难以识别(0表示容易识别)
		                                                   //bounding-box(包含左下角和右上角xy坐标)
			100
			96
			355
			324
		
	
	                                                           //检测到多个物体
		person
		Unspecified
		0
		0
		
			198
			58
			286
			197
		
	

对应的图片为:

③ImageSets

ImageSets存放的是每一种类型的challenge对应的图像数据。
在ImageSets下有四个文件夹:

其中Action下存放的是人的动作(例如running、jumping等等,这也是VOC challenge的一部分)
Layout下存放的是具有人体部位的数据(人的head、hand、feet等等,这也是VOC challenge的一部分)
Main下存放的是图像物体识别的数据,总共分为20类。
Segmentation下存放的是可用于分割的数据。

在这里主要考察Main文件夹。

Main文件夹下包含了20个分类的***_train.txt、***_val.txt和***_trainval.txt。
这些txt中的内容都差不多如下:

前面的表示图像的name,后面的1代表正样本,-1代表负样本。
_train中存放的是训练使用的数据,每一个class的train数据都有5717个。
_val中存放的是验证结果使用的数据,每一个class的val数据都有5823个。
_trainval将上面两个进行了合并,每一个class有11540个。
需要保证的是train和val两者没有交集,也就是训练数据和验证数据不能有重复,在选取训练数据的时候 ,也应该是随机产生的。

④SegmentationClass和SegmentationObject

这两个文件夹下保存了物体分割后的图片,在物体识别中没有用到,在这里不做详细展开。

接下来需要研究的是如何自己生成训练数据和测试数据,将在下一篇中阐述。

————————————————
版权声明:本文为CSDN博主「girafffeee」的原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/zhangjunbob/article/details/52769381

你可能感兴趣的:(深度学习)