Golang的string类型底层数据结构简单,本质也是一个结构体实例,且是const不可变。
通过下面一个例子来看:
package main
import (
"fmt"
"unsafe"
)
// from: string.go 在GoLand IDE中双击shift快速找到
type stringStruct struct {
array unsafe.Pointer // 指向一个 [len]byte 的数组
length int // 长度
}
func main() {
test := "hello"
p := (*str)(unsafe.Pointer(&test))
fmt.Println(&p, p) // 0xc420070018 &{0xa3f71 5}
c := make([]byte, p.length)
for i := 0; i < p.length; i++ {
tmp := uintptr(unsafe.Pointer(p.array)) // 指针类型转换通过unsafe包
c[i] = *(*byte)(unsafe.Pointer(tmp + uintptr(i))) // 指针运算只能通过uintptr
}
fmt.Println(c) // [104 101 108 108 111]
fmt.Println(string(c)) // [byte] --> string, "hello"
test2 := test + " world" // 字符串是不可变类型,会生成一个新的string实例
p2 := (*str)(unsafe.Pointer(&test2))
fmt.Println(&p2, p2) // 0xc420028030 &{0xc42000a2e5 11}
fmt.Println(test2) // hello, world
}
string类型是一个不可变类型,那么任何对string的修改都会新生成一个string的实例,如果是考虑效率的场景就要好好考虑一下如何修改了。先说一下最长用的+
操作,同样上面的例子,看一下+
操作拼接字符串的反汇编:
25 test2 := test + " world"
0x00000000004824d7 <+1127>: lea 0x105a2(%rip),%rax # 0x492a80
0x00000000004824de <+1134>: mov %rax,(%rsp)
0x00000000004824e2 <+1138>: callq 0x40dda0 <runtime.newobject> # 调用newobject函数
0x00000000004824e7 <+1143>: mov 0x8(%rsp),%rax
0x00000000004824ec <+1148>: mov %rax,0xa0(%rsp)
0x00000000004824f4 <+1156>: mov 0xa8(%rsp),%rax
0x00000000004824fc <+1164>: mov 0x8(%rax),%rcx
0x0000000000482500 <+1168>: mov (%rax),%rax
0x0000000000482503 <+1171>: mov %rax,0x8(%rsp)
0x0000000000482508 <+1176>: mov %rcx,0x10(%rsp)
0x000000000048250d <+1181>: movq $0x0,(%rsp)
0x0000000000482515 <+1189>: lea 0x30060(%rip),%rax # 0x4b257c
0x000000000048251c <+1196>: mov %rax,0x18(%rsp)
0x0000000000482521 <+1201>: movq $0x6,0x20(%rsp)
0x000000000048252a <+1210>: callq 0x43cc00 <runtime.concatstring2> # 调用concatstring2函数
因为当前go[2018.11 version: go1.11]
的不是遵循默认的x86 calling convention用寄存器传参,而是通过stack进行传参,所以go的反汇编不像c的那么容易理解,不过大概看懂+
背后的操作还是没问题的,看一下runtime源码的拼接函数:
func concatstring2(buf *tmpBuf, a [2]string) string {
return concatstrings(buf, a[:])
}
// concatstrings implements a Go string concatenation x+y+z+...
// The operands are passed in the slice a.
// If buf != nil, the compiler has determined that the result does not
// escape the calling function, so the string data can be stored in buf
// if small enough.
func concatstrings(buf *tmpBuf, a []string) string {
idx := 0
l := 0
count := 0
for i, x := range a {
n := len(x)
if n == 0 {
continue
}
if l+n < l {
throw("string concatenation too long")
}
l += n
count++
idx = i
}
if count == 0 {
return ""
}
// If there is just one string and either it is not on the stack
// or our result does not escape the calling frame (buf != nil),
// then we can return that string directly.
if count == 1 && (buf != nil || !stringDataOnStack(a[idx])) {
return a[idx]
}
s, b := rawstringtmp(buf, l)
for _, x := range a {
copy(b, x) // 最关键的拷贝操作
b = b[len(x):]
}
return s
}
分析runtime的concatstrings实现,可以看出+
最后新申请buf,拷贝原来的string到buf,最后返回新实例。那么每次的+
操作,都会涉及新申请buf,然后是对应的copy。如果反复使用+
,就不可避免有大量的申请内存操作,对于大量的拼接,性能就会受到影响了。
通过看源码,bytes.Buffer 增长buffer时是按照2倍来增长内存,可以有效避免频繁的申请内存,通过一个例子来看:
func main() {
var buf bytes.Buffer
for i := 0; i < 10; i++ {
buf.WriteString("hi ")
}
fmt.Println(buf.String())
}
对应的byte包库函数源码
// @file: buffer.go
func (b *Buffer) WriteString(s string) (n int, err error) {
b.lastRead = opInvalid
m, ok := b.tryGrowByReslice(len(s))
if !ok {
m = b.grow(len(s)) // 高效的增长策略 -> let capacity get twice as large
}
return copy(b.buf[m:], s), nil
}
// @file: buffer.go
// let capacity get twice as large !!!
func (b *Buffer) grow(n int) int {
m := b.Len()
// If buffer is empty, reset to recover space.
if m == 0 && b.off != 0 {
b.Reset()
}
// Try to grow by means of a reslice.
if i, ok := b.tryGrowByReslice(n); ok {
return i
}
// Check if we can make use of bootstrap array.
if b.buf == nil && n <= len(b.bootstrap) {
b.buf = b.bootstrap[:n]
return 0
}
c := cap(b.buf)
if n <= c/2-m {
// We can slide things down instead of allocating a new
// slice. We only need m+n <= c to slide, but
// we instead let capacity get twice as large so we
// don't spend all our time copying.
copy(b.buf, b.buf[b.off:])
} else if c > maxInt-c-n {
panic(ErrTooLarge)
} else {
// Not enough space anywhere, we need to allocate.
buf := makeSlice(2*c + n)
copy(buf, b.buf[b.off:])
b.buf = buf
}
// Restore b.off and len(b.buf).
b.off = 0
b.buf = b.buf[:m+n]
return m
}
这个函数可以一次申请最终string的大小,但是使用得预先准备好所有string,这种场景也是高效的,一个例子:
func main() {
var strs []string
for i := 0; i < 10; i++ {
strs = append(strs, "hi")
}
fmt.Println(strings.Join(strs, " "))
}
对应库的源码:
// Join concatenates the elements of a to create a single string. The separator string
// sep is placed between elements in the resulting string.
func Join(a []string, sep string) string {
switch len(a) {
case 0:
return ""
case 1:
return a[0]
case 2:
// Special case for common small values.
// Remove if golang.org/issue/6714 is fixed
return a[0] + sep + a[1]
case 3:
// Special case for common small values.
// Remove if golang.org/issue/6714 is fixed
return a[0] + sep + a[1] + sep + a[2]
}
// 计算好最终的string的大小
n := len(sep) * (len(a) - 1) //
for i := 0; i < len(a); i++ {
n += len(a[i])
}
b := make([]byte, n)
bp := copy(b, a[0])
for _, s := range a[1:] {
bp += copy(b[bp:], sep)
bp += copy(b[bp:], s)
}
return string(b)
}
看到这个名字,就想到了Java的库,哈哈,这个Builder用起来是最方便的,不过是在1.10后引入的。其高效也是体现在2倍速的内存增长, WriteString函数利用了slice类型对应append函数的2倍速增长。
一个例子:
func main() {
var s strings.Builder
for i := 0; i < 10; i++ {
s.WriteString("hi ")
}
fmt.Println(s.String())
}
对应库的源码
@file: builder.go
// WriteString appends the contents of s to b's buffer.
// It returns the length of s and a nil error.
func (b *Builder) WriteString(s string) (int, error) {
b.copyCheck()
b.buf = append(b.buf, s...)
return len(s), nil
}
Golang的字符串处理还是挺方便的,有垃圾回收和一些内置的语言级写法支持,让复杂字符串操作没有那么繁琐了,比起C/C++高效了不少。