在tensorflow中使用dropout防止过拟合示例代码(Movan视频)

import tensorflow as tf
from sklearn.datasets import load_digits
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelBinarizer

# load data
digits = load_digits()
X = digits.data
y = digits.target
y = LabelBinarizer().fit_transform(y)
X_train,X_test,y_train,y_test = train_test_split(X,y,test_size=0.3)

def add_layer(inputs,in_size,out_size,layer_name,activation_function=None):
    Weights = tf.Variable(tf.random_normal([in_size,out_size]))
    biases = tf.Variable(tf.zeros([1,out_size])+0.1)
    Wx_plus_b = tf.matmul(inputs,Weights) + biases
    Wx_plus_b = tf.nn.dropout(Wx_plus_b,keep_prob)
    if activation_function is None:
        outputs = Wx_plus_b
    else:
        outputs = activation_function(Wx_plus_b)
    tf.summary.histogram(layer_name + '/outputs',outputs)
    return outputs

keep_prob = tf.placeholder(tf.float32)
xs = tf.placeholder(tf.float32,[None,64]) #8*8
ys = tf.placeholder(tf.float32,[None,10])


l1 = add_layer(xs,64,50,'l1',activation_function=tf.nn.tanh)
prediction = add_layer(l1,50,10,'l2',activation_function=tf.nn.softmax)

cross_entropy = \
    tf.reduce_mean(-tf.reduce_sum(ys*tf.log(prediction),reduction_indices=[1])) # loss
tf.summary.scalar('loss',cross_entropy)
train_step = tf.train.GradientDescentOptimizer(0.6).minimize(cross_entropy)

with tf.Session() as sess:
    merged = tf.summary.merge_all()
    train_write = tf.summary.FileWriter(r'logs/train',sess.graph)
    test_write = tf.summary.FileWriter(r'logs/test',sess.graph)
    sess.run(tf.global_variables_initializer())
    for i in range(500):
        sess.run(train_step,feed_dict={xs:X_train,ys:y_train,keep_prob:0.5})
        if i%50 == 0:
            train_result = sess.run(merged,feed_dict={xs:X_train,ys:y_train,keep_prob:1})
            test_result = sess.run(merged,feed_dict={xs:X_test,ys:y_test,keep_prob:1})
            train_write.add_summary(train_result,i)
            test_write.add_summary(test_result,i)

 

你可能感兴趣的:(在tensorflow中使用dropout防止过拟合示例代码(Movan视频))