Python爬取拉勾网招聘信息存入数据库

先抓包分析我们想要获取的数据,很明显都是动态数据,所以直接到Network下的XHR里去找,这里我们找到具体数据后,就要去寻分析求地址与请求信息了。

Python爬取拉勾网招聘信息存入数据库_第1张图片


Python爬取拉勾网招聘信息存入数据库_第2张图片

还有需要提交的表单信息

Python爬取拉勾网招聘信息存入数据库_第3张图片


分析完毕之后,我们就可以开始写我们的爬虫项目了。

一.编写Item

item编写比较简单

# 拉钩职位信息
class LagouItem(scrapy.Item):
    # 城市
    city = scrapy.Field()

    # 公司
    companyFullName = scrapy.Field()

    # 公司规模
    companySize = scrapy.Field()

    # 地区
    district = scrapy.Field()

    # 教育程度
    education = scrapy.Field()

    # 地点
    linestaion = scrapy.Field()

    # 招聘职务
    positionName = scrapy.Field()

    # 招聘要求
    jobNature = scrapy.Field()

    # 工资
    salary = scrapy.Field()

    # 工作经验
    workYear = scrapy.Field()

    # 岗位发布时间
    createTime = scrapy.Field()

二.编写Pipelines

因为我这里是将数据存入数据库中,所以编写pipline之前记得创建好数据库和表,不知道的可以去看我之前写的文章,这里就不说怎么创建了。

import pymysql

def process_item(self, item, spider):
    # 如果爬虫名是movie
    if spider.name == 'lagou':
            try:
                self.cursor.execute("insert into Lagou (city, companyName, companySize, district, \
                 linestaion, positionName, jobNature, education, salary, workYear, showTime) \
                        VALUES (%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s)", (item['city'], item['companyFullName'], \
                        item['companySize'], item['district'], item['linestaion'], item['positionName'], \
                        item['jobNature'], item['education'], item['salary'], item['workYear'], item['createTime']))
                self.conn.commit()
            except pymysql.Error:
                print("Error%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s" % (item['city'], item['companyFullName'], \
                        item['companySize'], item['district'], item['linestaion'], item['positionName'],\
                        item['jobNature'], item['education'], item['salary'], item['workYear'], item['createTime']))
            return item

三.编写Spiders

最后就是编写我们的蜘蛛了。
# -*-coding:utf-8-*-

from scrapy.spiders import Spider
from scrapy import FormRequest
from scrapy.selector import Selector
from Mycrawl.items import LagouItem

import random
import json
import time


class LagouSpider(Spider):
    # 爬虫名字,重要
    name = 'lagou'
    headers = {'Content-Type': 'application/x-www-form-urlencoded; charset=UTF-8',
                'Referer': 'https://www.lagou.com/jobs/list_Python?labelWords=&fromSearch=true&suginput=1'}
    allow_domains = ['lagou.com']
    url = "https://www.lagou.com/jobs/positionAjax.json?" # &needAddtionalResult=true&isSchoolJob=0"
    page = 1
    allpage = 0

    def start_requests(self):

        yield FormRequest(self.url, headers=self.headers,
                                formdata={
                                    'first': 'false',
                                    'pn': str(self.page),
                                    'kd': 'Python',
                                    'city':'广州'

                                }, callback=self.parse
                              )

    def parse(self, response):
        # print(response.body)
        item = LagouItem()
        data = json.loads(response.body.decode('utf-8'))
        result = data['content']['positionResult']['result']
        totalCount = data['content']['positionResult']['totalCount']
        resultSize = data['content']['positionResult']['resultSize']
        for each in result:
            item['city'] = each['city']
            item['companyFullName'] = each['companyFullName']
            item['companySize'] = each['companySize']
            item['district'] = each['district']
            item['education'] = each['education']
            item['linestaion'] = each['linestaion']
            item['positionName'] = each['positionName']
            item['jobNature'] = each['jobNature']
            item['salary'] = each['salary']
            item['createTime'] = each['createTime']
            item['workYear'] = each['workYear']
            yield item
        time.sleep(random.randint(5, 20))

        if int(resultSize):
            self.allpage = int(totalCount) / int(resultSize) + 1
            if self.page < self.allpage:
                self.page += 1
                yield FormRequest(self.url, headers=self.headers,
                                    formdata={
                                        'first': 'false',
                                        'pn': str(self.page),
                                        'kd': 'Python',
                                        'city':'广州'
                                    }, callback=self.parse
                                  )

编写完毕后运行蜘蛛爬取数据。


四.结

Python爬取拉勾网招聘信息存入数据库_第4张图片



你可能感兴趣的:(Pythom爬虫,数据库)