先看help结果,及返回的结果,就是训练用的数据
make_classification(n_samples=100, n_features=20, n_informative=2,
n_redundant=2, n_repeated=0, n_classes=2, n_clusters_per_class=2, weights=None,
flip_y=0.01, class_sep=1.0, hypercube=True, shift=0.0, scale=1.0, shuffle=True, random_state=None)
X : array of shape [n_samples, n_features]
The generated samples.
y : array of shape [n_samples]
The integer labels for class membership of each sample.
y是0~n_classes-1单个数字的集合,分别对应X的sample
X几个特征就有几列,知道三个参数就可以干活了。
>>> X, y = make_classification(n_samples=100, n_features=5, n_classes=2, random_state=42)
>>> X[:12]
array([[-0.43066755, 0.67287309, -0.72427983, -0.53963044, -0.65160035],
[ 0.21164583, -0.84389686, 0.53479393, 0.82584805, 0.68195297],
[ 1.09267506, 0.40910605, 1.10009583, -0.94275087, -0.98150865],
[ 1.51990078, -0.77336118, 1.99805321, 0.15513175, -0.3853136 ],
[-0.45390127, -2.18347304, 0.24472415, 2.59123946, -0.48423407],
[-1.46361184, 0.37531604, -1.79532002, 0.25415746, -1.24778318],
[ 0.88948365, 0.80742726, 0.73019848, -1.28568005, 0.13074058],
[-1.11327862, 1.89033108, -1.92487377, -1.5598485 , 0.18645431],
[ 0.63174629, -0.88541844, 1.02703224, 0.68057323, 0.54709738],
[-0.88602706, -0.83311649, -0.7173148 , 1.31217492, 0.44381943],
[ 0.56372286, -1.47487037, 1.15509316, 1.35536951, -0.2176812 ],
[-1.02754411, -0.32929388, -1.05383855, 0.82600732, -0.05952536]])
>>> y[:12]
array([0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1])
For Video Recommendation in Deep learning QQ Group 277356808
For Speech, Image, Video in deep learning QQ Group 868373192
I'm here waiting for you