Python之heapq模块

1 heapq

该模块提供堆队列算法实现,即队列优先算法。堆是二项树,树中的父节点的值小于等于其子节点值,该算法使用数组 h e a p [ k ] < = h e a p [ 2 ∗ k + 1 ] heap[k]<=heap[2*k+1] heap[k]<=heap[2k+1] h e a p [ k ] < = h e a p [ 2 ∗ k + 2 ] heap[k]<=heap[2*k+2] heap[k]<=heap[2k+2]表示所有的k,从0开始计数,为了进行比较,不存在的元素记为无穷大,堆的一个有趣的属性是她的最小元素总是根元素 h e a p [ 0 ] heap[0] heap[0]

2 方法

2.1 heappush(heap, item)

功能:将item的值推送到heap中,保持堆不变。

  • Demo
import heapq
h = [1, 4, 56, 2, 5]
result = []
for value in h:
    heapq.heappush(result, value)
print("result form heap push: {}".format(result))
  • Result
result form heap push: [1, 4, 56, 2, 5]

2.2 heappop(heap)

功能:从heap中取值并返回最小的值,保持堆不变,若heap为空,报IndexError警告,使用 h e a p [ 0 ] heap[0] heap[0]即可获取最小的值,而不用pop。

  • Demo
import heapq
h = [1, 4, 56, 2, 5]
result = []
for value in h:
    heapq.heappush(result, value)
print("result form heap push: {}".format(result))
pop_result = [heapq.heappop(result) for i in range(len(result))]
print("result from pop: {}".format(pop_result))
  • Result
result form heap push: [1, 2, 56, 4, 5]
result from pop: [1, 2, 4, 5, 56]

2.3 heappushpop(heap, item)

功能:将item推送到heap,然后取出,并返回最小的值。

  • Demo
import heapq
h = [1, 4, 56, 2, 5, 6]
# 取出h中的第一个值
# 保持heap尺寸不变,将3推进heap
combine_result = heapq.heappushpop(h, 3) 
print("result form heap push: {}".format(combine_result))
print("new heap: {}".format(h))
  • Result
result form heap push: 1
new heap: [4, 2, 56, 3, 5, 6]

2.4 heapify(x)

功能:将列表x以线性时间方式转为堆。

  • Demo
import heapq
a = [1, 4, 5, 0]
heapq.heapify(a)
print("heapify result: {}".format(a))
  • Result
heapify result: [0, 1, 5, 4]

2.5 heapreplace(heap, item)

功能:从heap中取出并返回第一个值,将item推入heap,保持堆尺寸,若heap为空,报IndexError警告。

  • Demo
import heapq
a = [12, 33, 5, 10]
c = heapq.heapreplace(a, 2)
print("heap replace result: {}".format(c))
print("result: {}".format(a))
  • Result
heap replace result: 12
result: [2, 33, 5, 10]

2.6 merge(*iterables)

功能:多个输入合并为单个输出,返回排序的结果。

  • Demo
import heapq
a = [1, 33, 5, 10]
b = [3, 6, 7, 0, -1]
c = list(heapq.merge(b, a))
print("merge result: {}".format(c))
  • Result
merge result: [1, 3, 6, 7, 0, -1, 33, 5, 10]

2.7 nlargest(n, iterable[,key])

功能:从可遍历的数据集中返回n个最大的元素组成的列表。

  • Demo
import heapq
a = [1, 3, 4, 5, 6]
larger = heapq.nlargest(2, a)
print("largest two number: {}".format(larger))
  • Result
largest two number: [6, 5]

2.8 nsmallest(n, iterable[,key])

功能:从可遍历的数据集中返回n个最小的元素组成的列表。

  • Demo
import heapq
a = [1, 3, 4, 5, 6]
smaller = heapq.nsmallest(2, a)
print("smallest two number: {}".format(smaller))
  • Result
smallest two number: [1, 3]

[参考文献]
[1]https://docs.python.org/2/library/heapq.html


你可能感兴趣的:(#,Python三包)