reference : 《随机分形地形生成及其浏览》
* 本项目属于游戏程序设计5000行计划
算法实现起来很简单,分形也很有意思,我们假设我们越靠近一个物体,它的细节就会显示出来,那么对于具有分形特性的物体而言,我们看到的细节和整体并没有什么区别。正如我们不断zoom in观察这个 Koch 雪花,每个突出的角又能长出三个角,如此递归,永无止境……
地形也有这样的特性,对于两张不同尺度上的地形俯拍图,我们看到的细节也是类似的,也就是说,对于下图中的蓝色区域的地面,我们截取两个不同大小的橙色框所得到的图片,在人眼看来是差不多的。
利用这样的特性,我们就可以用分形的思想来生成随机地形。
具体的算法在开头给出的论文已经说的非常明白了,虽然这个论文并不是该算法(diamand - square algorithm)的最早版本,但中文看起来比英文要好理解一些。在这里只给出一些概述。
类似于二分法,取线段中点,使y值为线段两段的平均值加上一个随机数,得到两条线段,再分别取两个线段的中点,重复前面的过程。
由一维扩展而成,利用已知的a,b,c,d高度值,计算e,h,f,g, 设r为随机数(r随着迭代的次数,取值范围不断缩小)其中
h(e) = (h(a) + h(b)) / 2 + r(e)
h(f) = (h(b) + h(c)) / 2 + r(f)
h(g) = (h(c) + h(d)) / 2 + r(g)
h(h) = (h(a) + h(d)) / 2 + r(h)
然后利用e,f,g,h,计算m
h(m) = (h(e) + h(f) + h(g) + h(h))/4 + r(m)
如此得到一次递归流程,然后再对四个正方形进行同样的操作……
同样适用于二维,但是对上述算法的改进。
上图反映的是两次递归过程,以下只描述一次递归中做的事情。
先计算h(E) = (h(A) + h(B) + h(C) + h(D)) / 4 + r(E)
再计算:
h(F) = (h(A) + h(B) + h(E) + h(E)) / 4 + r(F)
h(I) = (h(A) + h(C) + h(E) + h(E)) / 4 + r(I)
h(S) = (h(B) + h(D) + h(E) + h(E)) / 4 + r(S)
h(H) = (h(C) + h(D) + h(E) + h(E)) / 4 + r(H)
然后再对新的四个正方形做同样的操作。
fractal.h
#pragma once
class fractal
{
private:
enum { MAX = 10000 };
float roughness;
int times;
int height;
float minHeight;
float maxHeight;
int n;
int D;
int indiceNum;
float** data;
float* vertex;
int* indice;
float step;
void genIndice();
void chooseColor(float height);
public:
void draw();
void calculate();
fractal(int _height, int _times, float _step, int D,int seed);
};
#include
#include
#include
#include
#include "fractal.h"
#include "gl/glut.h"
using namespace std;
// height : 值越大,地形起伏越大
// times : 迭代次数,次数越多,tire越多
// step : 绘制时一个网格的程度
// D : 随机数衰减因子,越大随机数随迭代的取值越小
// seed : 随机数种子
fractal::fractal(int _height, int _times, float _step, int _D,int seed)
{
srand(seed);
step = _step;
times = _times;
height = _height;
D = _D;
n = pow(2, times) + 1;
indiceNum = 6 * (n - 1)*(n - 1);
vertex = new float[3 * n*n];
indice = new int[indiceNum];
data = new float*[n];
for (int i = 0; i < n; i++) {
data[i] = new float[n];
for (int j = 0; j < n; j++) {
data[i][j] = 0;
}
}
}
// 生成顶点索引数据
void fractal::genIndice()
{
for (int i = 0; i < n - 1; i++) {
for (int j = 0; j < n - 1; j++) {
indice[3 * ((n - 1) * i + j)] = (n * i + j);
indice[3 * ((n - 1) * i + j) + 1] = (n * i + j + 1);
indice[3 * ((n - 1) * i + j) + 2] = (n * (i + 1) + j + 1);
}
}
cout << endl;
int off = 3 * (n - 1)*(n - 1);
for (int i = 0; i < n - 1; i++) {
for (int j = 0; j < n - 1; j++) {
indice[off + 3 * ((n - 1) * i + j)] = (n * i + j);
indice[off + 3 * ((n - 1) * i + j) + 1] = (n * (i + 1) + j);
indice[off + 3 * ((n - 1)* i + j) + 2] = (n * (i + 1) + j + 1);
}
}
}
// 生成[-num,num]之间的随机数
static float randnum(float num)
{
float max = num;
float min = -num;
int r;
float x;
r = rand();
x = (float)(r & 0x7fff) /
(float)0x7fff;
return (x * (max - min) + min);
}
// 计算顶点高度
void fractal::calculate()
{
int size = n - 1;
int number = 1;
int ratio = pow(2, D);
roughness = height;
//times为迭代次数
for (int t = 0; t < times; t++) {
// diamand阶段
for (int i = 0; i < number; i++) {
for (int j = 0; j < number; j++) {
float r = randnum(.5) * roughness;
int center_x = (size >> 1) + size * i;
int center_y = (size >> 1) + size * j;
data[center_x][center_y] =
(data[size * i][size * j]
+ data[size*i + size][size * j]
+ data[size * i][size * j + size]
+ data[size * i + size][size * j + size]) / 4 + r;
}
}
// square阶段
int pointNum = ((t + 1) << 1) + 1;
int pointStep = (n - 1) / (pointNum - 1);
for (int i = 0; i < pointNum; i++) {
for (int j = 0; j < pointNum; j++) {
if ((i + j) % 2 == 1){
float r = randnum(.5) * roughness;
if (i == 0){
data[i*pointStep][j*pointStep] =
(data[n - pointStep][j*pointStep] +
data[(i + 1)*pointStep][j*pointStep] +
data[i*pointStep][(j + 1)*pointStep] +
data[i*pointStep][(j-1)*pointStep]) / 4 + r;
}
else if (j == 0){
data[i*pointStep][j*pointStep] =
(data[(i-1)*pointStep][j*pointStep] +
data[(i + 1)*pointStep][j*pointStep] +
data[i*pointStep][(j + 1)*pointStep] +
data[i*pointStep][n - pointStep]) / 4 + r;
}
else if (i == pointNum - 1){
data[i*pointStep][j*pointStep] =
(data[pointStep][j*pointStep] +
data[(i - 1)*pointStep][j*pointStep] +
data[i*pointStep][(j + 1)*pointStep] +
data[i*pointStep][(j - 1)*pointStep]) / 4 + r;
}
else if (j == pointNum - 1){
data[i*pointStep][j*pointStep] =
(data[(i-1)*pointStep][j*pointStep] +
data[(i + 1)*pointStep][j*pointStep] +
data[i*pointStep][pointStep] +
data[i*pointStep][(j - 1)*pointStep]) / 4 + r;
}
else {
data[i*pointStep][j*pointStep] =
(data[(i - 1)*pointStep][j*pointStep] +
data[(i + 1)*pointStep][j*pointStep] +
data[i*pointStep][(j + 1)*pointStep] +
data[i*pointStep][(j - 1)*pointStep]) / 4 + r;
}
}
}
}
roughness = roughness / ratio;
size >>= 1;
number <<= 1;
}
// 把data映射到vertex数据上,并删除data,同时计算出最大高度和最小高度
minHeight = 10000;
maxHeight = -10000;
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
vertex[3 * (i*n + j)] = i* step - n*step / 2;
vertex[3 * (i*n + j) + 1] = data[i][j];
vertex[3 * (i*n + j) + 2] = j*step - n*step / 2;
if (maxHeight < data[i][j]) {
maxHeight = data[i][j];
}
if (minHeight > data[i][j]) {
minHeight = data[i][j];
}
}
delete[] data[i];
}
delete[] data;
// 生成索引
genIndice();
}
// 根据高度选择颜色
void fractal::chooseColor(float height)
{
const GLfloat blue[] = { 1.0 * 65 / 255, 1.0 * 127 / 255, 1.0 * 219 / 255 };
const GLfloat green[] = { 1.0 * 73 / 255, 1.0 * 161 / 255, 1.0 * 101 / 255 };
const GLfloat yellow[] = { 1.0 * 172 / 255, 1.0 * 189 / 255, 1.0 * 117 / 255 };
const GLfloat brown[] = { 1.0 * 153 / 255, 1.0 * 123 / 255, 1.0 * 46 / 255 };
float interval = maxHeight - minHeight;
if (height < minHeight + interval / 4){
glColor3fv(blue);
}
else if (height < minHeight + interval / 2){
glColor3fv(green);
}
else if (height < minHeight + 3 * interval / 4){
glColor3fv(yellow);
}
else if (height < maxHeight) {
glColor3fv(brown);
}
}
void fractal::draw()
{
glPushMatrix();
glBegin(GL_TRIANGLES);
for (int i = 0; i < indiceNum / 3; i++) {
chooseColor(vertex[3 * indice[3 * i] + 1]);
glVertex3f(vertex[3 * indice[3 * i]], vertex[3 * indice[3 * i] + 1], vertex[3 * indice[3 * i] + 2]);
chooseColor(vertex[3 * indice[3 * i + 1] + 1]);
glVertex3f(vertex[3 * indice[3 * i + 1]], vertex[3 * indice[3 * i + 1] + 1], vertex[3 * indice[3 * i + 1] + 2]);
chooseColor(vertex[3 * indice[3 * i + 2] + 1]);
glVertex3f(vertex[3 * indice[3 * i + 2]], vertex[3 * indice[3 * i + 2] + 1], vertex[3 * indice[3 * i + 2] + 2]);
}
glColor3f(1,1,1);
glEnd();
glPopMatrix();
}
#define _CRT_SECURE_NO_WARNINGS
#include
#include
#include"fractal.h"
#include"texture.h"
fractal* f;
float center[] = { 0, 0, 0 };
float eye[] = { 0, 0, 20 };
float tx, ty = 10, ax, ay=10, mx, my, zoom = 0;
bool isLine = false;
bool isDown = false;
void reshape(int width, int height)
{
if (height == 0) {
height = 1;
}
glViewport(0, 0, width, height);
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
float whRatio = (GLfloat)width / (GLfloat)height;
gluPerspective(45, whRatio, 1, 500);
glMatrixMode(GL_MODELVIEW);
}
void idle()
{
glutPostRedisplay();
}
void init(void)
{
glClearColor(1.0, 0.0, 0.0, 0.0);
glShadeModel(GL_SMOOTH);
glEnable(GL_DEPTH_TEST);
glColor4f(1.0, 1.0, 1.0, 1.0f);
glBlendFunc(GL_SRC_ALPHA, GL_ONE);
glEnable(GL_COLOR_MATERIAL);
glColorMaterial(GL_FRONT, GL_AMBIENT_AND_DIFFUSE);
// height : 值越大,地形起伏越大
// times : 迭代次数,次数越多,tire越多
// step : 绘制时一个网格的程度
// D : 随机数衰减因子,越大随机数随迭代的取值越小(大于1)
// seed : 随机数种子
f = new fractal(5, 3, 2, 2, 23);
f->calculate();
}
void redraw()
{
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glClearColor(0, 0, 0, 1);
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
gluLookAt(eye[0], eye[1], eye[2], center[0], center[1], center[2], 0, 1, 0);
if(isLine)glPolygonMode(GL_FRONT_AND_BACK, GL_LINE);
else glPolygonMode(GL_FRONT_AND_BACK, GL_FILL);
glTranslatef(tx,ty,zoom);
glRotatef(ax, 1.0f, 0.0f, 0.0f);
glRotatef(ay, 0.0f, 1.0f, 0.0f);
glPushMatrix();
glTranslatef(0, -roomSizeY / 2,0);
f->draw();
glPopMatrix();
glutSwapBuffers();
}
void myMouse(int button, int state, int x, int y)
{
if (button == GLUT_LEFT_BUTTON) {
if (state == GLUT_DOWN) {
isDown = true;
mx = x;
my = y;
}
else if (state == GLUT_UP) {
isDown = false;
}
}
glutPostRedisplay();
}
void mouseMotion(int x, int y)
{
if (isDown) {
ax += 1.0f*(y - my) / 10.0f;
ay += 1.0f*(x - mx) / 10.0f;
mx = x;
my = y;
}
glutPostRedisplay();
}
void myKeyboard(unsigned char key, int x, int y)
{
switch (key)
{
case 'a': { //左移
tx -= 1;
break;
}
case 'd': { //右移
tx += 1;
break;
}
case 'w': { //上移
ty += 1;
break;
}
case 's': { //下移
ty -= 1;
break;
}
case 'z': { //后移
zoom += 1;
break;
}
case 'c': { //前移
zoom -= 1;
break;
}
case 'p': {
// 切换绘制模式
if (isLine) {
isLine = false;
}
else isLine = true;
}
}
glutPostRedisplay();
}
int main(int argc, char *argv[])
{
glutInit(&argc, argv);
glutInitDisplayMode(GLUT_RGBA | GLUT_DEPTH | GLUT_DOUBLE);
glutInitWindowSize(800, 600);
int windowHandle = glutCreateWindow("Simple GLUT App");
glutDisplayFunc(redraw);
glutReshapeFunc(reshape);
glutMouseFunc(myMouse);
glutMotionFunc(mouseMotion);
glutKeyboardFunc(myKeyboard);
glutIdleFunc(idle);
init();
glutMainLoop();
system("pause");
return 0;
}