线性最小二乘法的系数方差估计

线性模型
y = X β + ϵ y = X \beta+\epsilon y=Xβ+ϵ
ϵ ∈ R m × 1 \epsilon\in\R^{m\times1} ϵRm×1假定为白噪声,方差为 σ 2 \sigma^2 σ2 y ∈ R m × 1 , X ∈ R m × n y\in\R^{m\times1},X\in\R^{m\times n} yRm×1,XRm×n已经中心化,即各列符合正态分布,且均值为0。这是线性模型能起到作用的必要条件
最小二乘法的解为
β ^ = ( X T X ) X T y = X + y ,   β ^ ∈ R n × 1 \hat{\beta} = (X^TX)X^Ty = X^{+}y, \ \hat{\beta}\in\R^{n\times 1} β^=(XTX)XTy=X+y, β^Rn×1
无偏估量性质
E ( β ^ ) = E ( X + y ) = E ( X + ( X β + ϵ ) ) = E ( β + X + ϵ ) = β + E ( X + ϵ ) = β E(\hat{\beta}) = E(X^{+}y) = E(X^{+}( X\beta+\epsilon))\\ =E(\beta+X^{+}\epsilon) = \beta +E(X^{+}\epsilon) = \beta E(β^)=E(X+y)=E(X+(Xβ+ϵ))=E(β+X+ϵ)=β+E(X+ϵ)=β
β \beta β为实际的系数
参数方差估计
V a r ( β ^ − β ) = V a r ( X + ϵ ) = X + v a r ( ϵ ) [ X + ] T ) = σ 2 ( X T X ) − 1 Var(\hat{\beta}-\beta)=Var(X^{+}\epsilon)=X^{+}var(\epsilon)[X^{+}] ^T) =\sigma^2(X^TX)^{-1} Var(β^β)=Var(X+ϵ)=X+var(ϵ)[X+]T)=σ2(XTX)1
假设有单位向量 w ∈ R n × 1 ,   s . t .   ∣ ∣ w ∣ ∣ = 1 w\in\R^{n\times 1}, \ s.t.\ ||w||=1 wRn×1, s.t. w=1,则有
V a r ( w T β ^ ) = w T V a r ( β ^ ) w = σ 2 w T ( X T X ) − 1 w Var(w^T\hat{\beta}) = w^TVar(\hat{\beta})w=\sigma^2w^T(X^TX)^{-1}w Var(wTβ^)=wTVar(β^)w=σ2wT(XTX)1w

你可能感兴趣的:(机器学习)