- 【机器学习算法】XGBoost原理
一、基本内容基本内容:GBDT的基础上,在损失函数上加入树模型复杂度的正则项与GBDT一样,也是使用新的弱学习器拟合残差(当前模型负梯度,残差方向)GBDT损失函数Loss=∑i=1NL(yi,yit)Loss=\sum_{i=1}^{N}L(y_i,y_i^{t})Loss=i=1∑NL(yi,yit)XGboost损失函数Loss=∑i=1SL(yi,yit)+∑j=1NΩ(fj))Loss=
- 大语言模型(LLM)量化基础知识(一)
-派神-
RAGNLPChatGPT语言模型人工智能自然语言处理
承接各类AI相关应用开发项目(包括但不限于大模型微调、RAG、AI智能体、NLP、机器学习算法、运筹优化算法、数据分析EDA等)!!!有意愿请私信!!!随着大型语言模型(LLM)的参数数量的增长,与其支持硬件(加速器内存)增长速度之间的差距越来越大,如下图所示:上图显示,从2017年到2022年,语言模型的大小显著增加:2017年:Transformer模型(0.05B参数)2018年:GPT(0
- ICBDDM2025:大数据与数字化管理前沿峰会
鸭鸭鸭进京赶烤
学术会议大数据图像处理计算机视觉AI编程人工智能机器人考研
在选择大学专业时,可以先从自身兴趣、能力和职业规划出发,初步确定几个感兴趣的领域。然后结合外部环境因素,如专业前景、教育资源和就业情况等,对这些专业进行深入的分析和比较。大数据专业:是一个热门且前沿的学科领域,它涉及到数据的收集、存储、处理、分析和应用等多个方面。课程设置基础课程数学基础:高等数学、线性代数、概率论与数理统计等。这些课程为大数据分析提供了必要的数学工具,例如线性代数在机器学习算法中
- 【PyCharm 使用技巧】PyCharm 基本功能详解 || 【Jupyter Notebook】如何进入其它盘,如D盘?H盘?|| 【机器学习】聚类算法详解及其应用 || 道路交通流量模拟预测
追光者♂
Python从入门到人工智能工具技巧解决办法百题千解计划(项目实战案例)PyCharm使用技巧Jupyter如何进入其它盘聚类算法练习PyCharm详解时空交通流预测模拟
作者主页:追光者♂个人简介:在读计算机专业硕士研究生、CSDN-人工智能领域新星创作者、2022年CSDN博客之星人工智能领域TOP4、阿里云社区专家博主【无限进步,一起追光!】欢迎点赞收藏⭐留言本篇的目录一,是请看目录四——PyCharm基础设置回顾的续篇,继续记录讲解PyCharm的基本功能。目录二回顾了在使用Jupyter时的问题。目录三练习了机器学习算法中的聚类算法。目录一、再次了解PyC
- XGBoost算法原理及Python实现
法号清水
算法python开发语言
一、概述 XGBoost是一种基于梯度提升框架的机器学习算法,它通过迭代地训练一系列决策树来构建模型。核心思想是通过不断地在已有模型的基础上,拟合负梯度方向的残差(真实值与预测值的差)来构建新的弱学习器,达到逐步优化模型的目的。 XGBoost在构建决策树时,利用了二阶导数信息。在损失函数的优化过程中,不仅考虑了一阶导数(梯度),还引入了二阶导数(海森矩阵),这使得算法能够更精确地找到损失函数
- GBDT:梯度提升决策树——集成学习中的预测利器
大千AI助手
人工智能Python#OTHER决策树集成学习算法GBDT梯度提升人工智能机器学习
核心定位:一种通过串行集成弱学习器(决策树)、以梯度下降方式逐步逼近目标函数的机器学习算法,在结构化数据预测任务中表现出色。本文由「大千AI助手」原创发布,专注用真话讲AI,回归技术本质。拒绝神话或妖魔化。搜索「大千AI助手」关注我,一起撕掉过度包装,学习真实的AI技术!一、GBDT是什么?全称:GradientBoostingDecisionTree(梯度提升决策树)本质:Boosting集成学
- 机器学习算法-逻辑回归模型在交通领域的应用
是一个Bug
机器学习算法逻辑回归
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档逻辑回归模型在交通领域的应用:车流数量和平均速度之间的关系前言结果分析代码分析逻辑回归可视化:交通拥堵预测的动态建模过程一、交通数据生成与预处理二、逻辑回归核心算法实现三、动态可视化:决策边界的演变过程四、特征标准化与模型评估五、实验结果与模型解读六、拓展思考:逻辑回归的局限性结语:从代码到交通智能前言紧接上文的逻辑回归原理分析讲一讲
- LeRobot: 让机械臂接入大模型
小众AI
AI开源人工智能AI编程
HuggingFace推出的开源项目LeRobot引发了业界广泛关注。这一项目通过整合最先进的机器学习算法和便捷的开发工具链,为开发者提供了一个高效、易用的机器人AI开发平台,堪称机器人领域的“Transformer时刻”。LeRobot旨在为PyTorch中的真实机器人技术提供模型、数据集和工具。目标是降低机器人技术的准入门槛,以便每个人都可以从共享数据集和预训练模型中受益。LeRobot包含最
- AI智能时代SEO优化,AISEO-人工智能搜索引擎优化
weixin_ggwwsscc
人工智能搜索引擎deepseekAIseo
AI驱动的关键词精准匹配与语义理解传统的关键词排名规则主要依赖于关键词的字面匹配,即网站内容中出现的关键词与用户搜索词完全一致或高度相似时,才有可能获得较好的排名。然而,随着AI技术在搜索引擎中的广泛应用,这一局面正在发生深刻改变。如今的搜索引擎借助自然语言处理(NLP)和机器学习算法,能够深入理解用户搜索词背后的语义和意图,实现更精准的内容匹配。AI智能时代SEO优化,AISEO-人工智能搜索引
- 机器学习15-XGBoost
吹风看太阳
机器学习机器人人工智能
XGBOOST学习笔记一、引言在机器学习的集成学习算法中,XGBoost(eXtremeGradientBoosting)凭借其高效性、可扩展性和卓越的性能,成为数据科学竞赛和工业界应用的热门选择。XGBoost本质上是一种基于梯度提升框架(GradientBoostingFramework)的机器学习算法,它通过不断拟合残差来构建多个弱学习器(通常是决策树),并将这些弱学习器进行累加,从而形成一
- 机器学习算法实战系列:异常检测全攻略——从统计方法到深度学习的异常发现技术
全息架构师
AI行业应用实战先锋机器学习算法深度学习
机器学习算法实战系列:异常检测全攻略——从统计方法到深度学习的异常发现技术引言“数据中的异常往往蕴含着最有价值的信息!从金融欺诈检测到工业设备故障预警,从网络安全到医疗诊断,异常检测技术正在守护着各个领域的安全底线。”异常检测是机器学习中极具挑战性又极具价值的领域,它旨在识别数据中与大多数实例显著不同的异常模式。本文将系统讲解异常检测的核心算法,从传统的统计方法到前沿的深度学习技术,通过金融反欺诈
- 【C语言练习】100. 使用C语言实现简单的自然语言理解算法
视睿
从零开始学习机器人c语言算法开发语言排序算法
100.使用C语言实现简单的自然语言理解算法100.使用C语言实现简单的自然语言理解算法关键词匹配算法简介示例代码:简单的关键词匹配算法代码说明示例运行扩展功能其他方法基于规则的方法统计机器学习方法C语言中统计机器学习方法概述常见统计机器学习算法的C实现贝叶斯定理基础算法核心思想常见变体实现示例(Python)优缺点优化库与工具性能与注意事项有限状态自动机(FSA)深度学习接口调用混合方法100.
- AI如何改变IT行业
保持学习ing
人工智能
AI对IT行业的变革AI技术正在深刻影响IT行业的各个方面,从自动化运维到软件开发,再到数据分析和安全防护。以下是AI改变IT行业的主要方式:自动化运维(AIOps)AI驱动的运维工具可以实时监控系统性能,预测潜在故障并自动修复。机器学习算法分析日志数据,识别异常模式,减少人工干预。例如,AI可以预测服务器负载峰值,提前分配资源避免宕机。智能软件开发AI辅助编程工具如GitHubCopilot基于
- 机器学习算法_聚类KMeans算法
TY-2025
机器学习机器学习算法聚类
一、聚类算法分析1.概念概念:根据样本之间的相似性,将样本划分到不同的类别中;不同的相似度的计算方法,会得到不同的聚类结果,常见的相似度计算方法有欧氏距离法(无监督算法)聚类算法的目的是在没有先验知识的情况下,自动发现数据集中的内在结构和模式2.聚类算法分类(1)根据聚类颗粒度分类个数比较多的,细聚类;个数比较多的,粗聚类(2)根据实现方法分类K-means:按照质心分类层次聚类:对数据进行逐层划
- 图像处理与机器学习项目:特征提取、PCA与分类器评估
pk_xz123456
深度学习仿真模型算法图像处理机器学习人工智能
图像处理与机器学习项目:特征提取、PCA与分类器评估项目概述本项目将完成一个完整的图像处理与机器学习流程,包括数据探索、特征提取、主成分分析(PCA)、分类器实现和评估五个关键步骤。我们将使用Python的OpenCV、scikit-learn和scikit-image库来处理图像数据并实现机器学习算法。importnumpyasnpimportmatplotlib.pyplotaspltimpo
- 核方法、核技巧、核函数、核矩阵
第六五签
数学模型矩阵线性代数
核方法(KernelMethods)和核技巧(KernelTrick)是机器学习中处理非线性问题的强大理论框架和实践工具。核心目标:征服非线性许多机器学习算法(如感知机、支持向量机SVM、主成分分析PCA)本质上是寻找线性模式或线性决策边界(直线/平面/超平面)。然而,现实世界的数据往往是线性不可分的,这意味着在原始特征空间中,无法用一条直线(或超平面)完美地将不同类别的数据点分开,或者无法用线性
- 机器学习之集成学习算法
文柏AI共享
机器学习集成学习算法
集成学习算法一概述二Bagging方法2.1思想2.2代表算法2.3API三Boosting方法3.1AdaBoost3.1.1思想3.1.2API3.2GBDT3.2.1思想3.2.2API3.3XGBoost3.3.1思想3.3.2API机器学习算法很多,今天和大家聊一个很强悍的算法-集成学习算法,基本上是处理复杂问题的首选.话不多说,直奔主题.一概述集成学习(EnsembleLearning
- 机器学习算法——朴素贝叶斯和特征降维
TY-2025
机器学习机器学习算法人工智能
一、常见概率计算朴素贝叶斯算法是利用概率值进行分类的一种机器学习算法概率:一种事情发生的可能性,取值在[0,1]之间条件概率:表示事件A在另外一个事件B已经发生的条件下的发生概率P(A∣B)P(A|B)P(A∣B)联合概率:表示多个条件同时成立的概率P(AB)=P(A)∗P(B∣A)=P(B)∗P(A∣B)P(AB)=P(A)*P(B|A)=P(B)*P(A|B)P(AB)=P(A)∗P(B∣A)
- ubuntu20.04安装python_Ubuntu 20.04下安装部署最新的Python 3.9
weixin_39652646
原标题:Ubuntu20.04下安装部署最新的Python3.9来自:Linux迷链接:https://www.linuxmi.com/ubuntu-20-04-python-3-9.htmlPython是世界上最流行的编程语言之一。它是一种通用语言,用于构建各种各样的应用程序,从简单的脚本到复杂的机器学习算法。由于其简单且易于学习的语法,Python是初学者和有经验的开发人员的热门选择。Pyth
- 机器学习算法种类繁多以下是主要算法的详细描述、使用场景、经典案例、开源框架,以及学习和应用到实际场景的建议
zhxup606
数据结构与算法.netcore
机器学习算法种类繁多,根据任务类型主要分为监督学习、无监督学习、半监督学习和强化学习四大类。以下是对主要算法的详细描述、使用场景、经典案例、开源框架,以及学习和应用到实际场景的建议。一、机器学习算法分类及详细描述1.监督学习(SupervisedLearning)监督学习使用带标签的数据(输入和输出已知)进行训练,目标是学习输入到输出的映射函数。1.1线性回归(LinearRegression)描
- 机器学习KNN算法全解析:从原理到实战
AI妈妈手把手
机器学习算法人工智能pythonKNN
大家好!今天我们来聊聊机器学习中的"懒人算法"——KNN(K-NearestNeighbors,K近邻)算法。这个算法就像个"墙头草",它不学习模型参数,而是直接根据邻居的"投票"来做决策,是不是很有趣?让我们一起来揭开它的神秘面纱吧!一、算法简介:近朱者赤,近墨者黑KNN(K-NearestNeighbors,K最近邻)是最直观的机器学习算法之一,核心思想就是“物以类聚”:一个样本的类别由其最近
- 机器学习算法实战系列:决策树与随机森林全攻略
全息架构师
AI行业应用实战先锋Python实战项目大揭秘机器学习算法决策树
机器学习算法实战系列:决策树与随机森林全攻略引言“想知道Kaggle竞赛冠军团队的秘密武器吗?决策树和随机森林算法在80%的数据科学项目中都会用到!”决策树和随机森林是机器学习中最强大、最实用的算法之一。它们不仅直观易懂,而且在处理结构化数据时往往能取得惊人的效果。本文将带你从决策树的数学原理出发,逐步深入到随机森林的工业级应用,最后通过多个实战案例巩固所学知识。准备好迎接这场机器学习的视觉盛宴了
- 使用PyGAD训练Keras模型:从入门到实践
t0_54program
大数据与人工智能keras人工智能深度学习个人开发
在机器学习领域,如何高效地训练模型是一个关键问题。PyGAD作为一个开源的Python库,为我们提供了利用遗传算法来训练机器学习算法的有力工具,特别是在训练Keras模型方面,展现出独特的优势。一、PyGAD库简介PyGAD允许开发者构建遗传算法,并用于训练各类机器学习算法。它提供了丰富的参数,能针对不同类型的问题定制遗传算法。比如在解决一些复杂的优化问题时,我们可以通过调整这些参数,使遗传算法更
- 使用MATLAB和Simulink来设计并仿真一个智能家居基于机器视觉的安全监控系统
amy_mhd
matlab智能家居开发语言
目录一、准备工作二、步骤详解第一步:创建Simulink模型第二步:构建图像采集模块第三步:实现图像预处理第四步:设计背景建模与差分第五步:实现特征提取与行为识别第六步:设计响应机制第七步:搭建用户界面(可选)第八步:运行仿真并分析结果注意事项智能家居中基于机器视觉的安全监控系统通过摄像头捕捉图像,并利用图像处理和机器学习算法来分析这些图像,以实现诸如入侵检测、异常行为识别等功能。这种系统可以极大
- 【动手学机器学习】第三章模式识别与机器学习经典算法——k 近邻算法
小洛~·~
算法机器学习近邻算法python人工智能
前言本章先来讲解k近邻算法——最简单的机器学习算法,从中展开机器学习的一些基本概念和思想。或许有的读者会认为机器学习非常困难,需要庞大的模型、复杂的网络,但事实并非如此。相当多的机器学习算法都非常简单、直观,也不涉及神经网络。本章就将介绍一个最基本的分类和回归算法:k近邻(k-nearestneighbor,KNN)算法。KNN是最简单也是最重要的机器学习算法之一,它的思想可以用一句话来概括:“相
- 机器学习算法-k-means
不会敲代码的灵长类
机器学习kmeans算法机器学习
今天我们用「超市顾客分组」的例子来讲解K-means算法,从原理到实现一步步拆解,保证零基础也能懂!例子背景假设你是超市经理,手上有顾客的以下数据:顾客ID每月消费金额(元)每周到店次数130002250008335003470006520001你想把顾客分成3个群体,分别制定营销策略,该怎么做?K-means原理1.核心思想"物以类聚"——让相似特征的顾客自动聚成一类➡️通过计算距离,把数据划分
- 心脏病预测利器:基于机器学习的智能分析系统
松京焕Max
心脏病预测利器:基于机器学习的智能分析系统【下载地址】使用机器学习识别心脏病预测本项目专注于通过数据分析与机器学习算法来增强心脏病预测的能力。在当前医疗健康领域,数据驱动的方法已经成为提升疾病预防和治疗效果的关键。本项目采用真实的心脏病患者数据集,经过细致的数据清洗和预处理阶段,为模型的训练打下坚实基础项目地址:https://gitcode.com/open-source-toolkit/9a0
- Spark MLlib模型训练—分类算法 Decision tree classifier
猫猫姐
Spark实战spark-ml分类决策树
SparkMLlib模型训练—分类算法Decisiontreeclassifier决策树(DecisionTree)是一种经典的机器学习算法,广泛应用于分类和回归问题。决策树模型通过一系列的决策节点将数据划分成不同的类别,从而形成一棵树结构。每个节点表示一个特征的分裂,叶子节点代表最终的类别标签。在大数据场景下,SparkMLlib提供了对决策树的高效实现,能够处理大规模数据集并生成复杂的分类模型
- 机器学习算法-决策树
不会敲代码的灵长类
机器学习机器学习算法决策树
今天我们用一个「相亲决策」的例子来讲解决策树算法,保证你轻松理解原理和实现!决策树是什么?决策树就像玩「20个问题」猜谜游戏:你心里想一个东西(比如「苹果」)朋友通过一系列问题猜(「是水果吗?」→「是红色的吗?」→...)问的问题越精准,猜得越快!机器学习中的决策树:通过一系列「如果...那么...」的规则,把数据一步步分类。例子:用决策树决定是否相亲假设你是媒婆,手上有历史相亲数据,记录每个人的
- AIGC提示(prompt)飞升方法:走向专家之路
herosunly
大模型AIGCprompt专家之路
大家好,我是herosunly。985院校硕士毕业,现担任算法研究员一职,热衷于机器学习算法研究与应用。曾获得阿里云天池比赛第一名,CCF比赛第二名,科大讯飞比赛第三名。拥有多项发明专利。对机器学习和深度学习拥有自己独到的见解。曾经辅导过若干个非计算机专业的学生进入到算法行业就业。希望和大家一起成长进步。 本文主要介绍了AIGC提示(prompt)飞升方法:走向专家之路,希望对学习大语言模型
- Enum 枚举
120153216
enum枚举
原文地址:http://www.cnblogs.com/Kavlez/p/4268601.html Enumeration
于Java 1.5增加的enum type...enum type是由一组固定的常量组成的类型,比如四个季节、扑克花色。在出现enum type之前,通常用一组int常量表示枚举类型。比如这样:
public static final int APPLE_FUJI = 0
- Java8简明教程
bijian1013
javajdk1.8
Java 8已于2014年3月18日正式发布了,新版本带来了诸多改进,包括Lambda表达式、Streams、日期时间API等等。本文就带你领略Java 8的全新特性。
一.允许在接口中有默认方法实现
Java 8 允许我们使用default关键字,为接口声明添
- Oracle表维护 快速备份删除数据
cuisuqiang
oracle索引快速备份删除
我知道oracle表分区,不过那是数据库设计阶段的事情,目前是远水解不了近渴。
当前的数据库表,要求保留一个月数据,且表存在大量录入更新,不存在程序删除。
为了解决频繁查询和更新的瓶颈,我在oracle内根据需要创建了索引。但是随着数据量的增加,一个半月数据就要超千万,此时就算有索引,对高并发的查询和更新来说,让然有所拖累。
为了解决这个问题,我一般一个月会进行一次数据库维护,主要工作就是备
- java多态内存分析
麦田的设计者
java内存分析多态原理接口和抽象类
“ 时针如果可以回头,熟悉那张脸,重温嬉戏这乐园,墙壁的松脱涂鸦已经褪色才明白存在的价值归于记忆。街角小店尚存在吗?这大时代会不会牵挂,过去现在花开怎么会等待。
但有种意外不管痛不痛都有伤害,光阴远远离开,那笑声徘徊与脑海。但这一秒可笑不再可爱,当天心
- Xshell实现Windows上传文件到Linux主机
被触发
windows
经常有这样的需求,我们在Windows下载的软件包,如何上传到远程Linux主机上?还有如何从Linux主机下载软件包到Windows下;之前我的做法现在看来好笨好繁琐,不过也达到了目的,笨人有本方法嘛;
我是怎么操作的:
1、打开一台本地Linux虚拟机,使用mount 挂载Windows的共享文件夹到Linux上,然后拷贝数据到Linux虚拟机里面;(经常第一步都不顺利,无法挂载Windo
- 类的加载ClassLoader
肆无忌惮_
ClassLoader
类加载器ClassLoader是用来将java的类加载到虚拟机中,类加载器负责读取class字节文件到内存中,并将它转为Class的对象(类对象),通过此实例的 newInstance()方法就可以创建出该类的一个对象。
其中重要的方法为findClass(String name)。
如何写一个自己的类加载器呢?
首先写一个便于测试的类Student
- html5写的玫瑰花
知了ing
html5
<html>
<head>
<title>I Love You!</title>
<meta charset="utf-8" />
</head>
<body>
<canvas id="c"></canvas>
- google的ConcurrentLinkedHashmap源代码解析
矮蛋蛋
LRU
原文地址:
http://janeky.iteye.com/blog/1534352
简述
ConcurrentLinkedHashMap 是google团队提供的一个容器。它有什么用呢?其实它本身是对
ConcurrentHashMap的封装,可以用来实现一个基于LRU策略的缓存。详细介绍可以参见
http://code.google.com/p/concurrentlinke
- webservice获取访问服务的ip地址
alleni123
webservice
1. 首先注入javax.xml.ws.WebServiceContext,
@Resource
private WebServiceContext context;
2. 在方法中获取交换请求的对象。
javax.xml.ws.handler.MessageContext mc=context.getMessageContext();
com.sun.net.http
- 菜鸟的java基础提升之道——————>是否值得拥有
百合不是茶
1,c++,java是面向对象编程的语言,将万事万物都看成是对象;java做一件事情关注的是人物,java是c++继承过来的,java没有直接更改地址的权限但是可以通过引用来传值操作地址,java也没有c++中繁琐的操作,java以其优越的可移植型,平台的安全型,高效性赢得了广泛的认同,全世界越来越多的人去学习java,我也是其中的一员
java组成:
- 通过修改Linux服务自动启动指定应用程序
bijian1013
linux
Linux中修改系统服务的命令是chkconfig (check config),命令的详细解释如下: chkconfig
功能说明:检查,设置系统的各种服务。
语 法:chkconfig [ -- add][ -- del][ -- list][系统服务] 或 chkconfig [ -- level <</SPAN>
- spring拦截器的一个简单实例
bijian1013
javaspring拦截器Interceptor
Purview接口
package aop;
public interface Purview {
void checkLogin();
}
Purview接口的实现类PurviesImpl.java
package aop;
public class PurviewImpl implements Purview {
public void check
- [Velocity二]自定义Velocity指令
bit1129
velocity
什么是Velocity指令
在Velocity中,#set,#if, #foreach, #elseif, #parse等,以#开头的称之为指令,Velocity内置的这些指令可以用来做赋值,条件判断,循环控制等脚本语言必备的逻辑控制等语句,Velocity的指令是可扩展的,即用户可以根据实际的需要自定义Velocity指令
自定义指令(Directive)的一般步骤
&nbs
- 【Hive十】Programming Hive学习笔记
bit1129
programming
第二章 Getting Started
1.Hive最大的局限性是什么?一是不支持行级别的增删改(insert, delete, update)二是查询性能非常差(基于Hadoop MapReduce),不适合延迟小的交互式任务三是不支持事务2. Hive MetaStore是干什么的?Hive persists table schemas and other system metadata.
- nginx有选择性进行限制
ronin47
nginx 动静 限制
http {
limit_conn_zone $binary_remote_addr zone=addr:10m;
limit_req_zone $binary_remote_addr zone=one:10m rate=5r/s;...
server {...
location ~.*\.(gif|png|css|js|icon)$ {
- java-4.-在二元树中找出和为某一值的所有路径 .
bylijinnan
java
/*
* 0.use a TwoWayLinkedList to store the path.when the node can't be path,you should/can delete it.
* 1.curSum==exceptedSum:if the lastNode is TreeNode,printPath();delete the node otherwise
- Netty学习笔记
bylijinnan
javanetty
本文是阅读以下两篇文章时:
http://seeallhearall.blogspot.com/2012/05/netty-tutorial-part-1-introduction-to.html
http://seeallhearall.blogspot.com/2012/06/netty-tutorial-part-15-on-channel.html
我的一些笔记
===
- js获取项目路径
cngolon
js
//js获取项目根路径,如: http://localhost:8083/uimcardprj
function getRootPath(){
//获取当前网址,如: http://localhost:8083/uimcardprj/share/meun.jsp
var curWwwPath=window.document.locati
- oracle 的性能优化
cuishikuan
oracleSQL Server
在网上搜索了一些Oracle性能优化的文章,为了更加深层次的巩固[边写边记],也为了可以随时查看,所以发表这篇文章。
1.ORACLE采用自下而上的顺序解析WHERE子句,根据这个原理,表之间的连接必须写在其他WHERE条件之前,那些可以过滤掉最大数量记录的条件必须写在WHERE子句的末尾。(这点本人曾经做过实例验证过,的确如此哦!
- Shell变量和数组使用详解
daizj
linuxshell变量数组
Shell 变量
定义变量时,变量名不加美元符号($,PHP语言中变量需要),如:
your_name="w3cschool.cc"
注意,变量名和等号之间不能有空格,这可能和你熟悉的所有编程语言都不一样。同时,变量名的命名须遵循如下规则:
首个字符必须为字母(a-z,A-Z)。
中间不能有空格,可以使用下划线(_)。
不能使用标点符号。
不能使用ba
- 编程中的一些概念,KISS、DRY、MVC、OOP、REST
dcj3sjt126com
REST
KISS、DRY、MVC、OOP、REST (1)KISS是指Keep It Simple,Stupid(摘自wikipedia),指设计时要坚持简约原则,避免不必要的复杂化。 (2)DRY是指Don't Repeat Yourself(摘自wikipedia),特指在程序设计以及计算中避免重复代码,因为这样会降低灵活性、简洁性,并且可能导致代码之间的矛盾。 (3)OOP 即Object-Orie
- [Android]设置Activity为全屏显示的两种方法
dcj3sjt126com
Activity
1. 方法1:AndroidManifest.xml 里,Activity的 android:theme 指定为" @android:style/Theme.NoTitleBar.Fullscreen" 示例: <application
- solrcloud 部署方式比较
eksliang
solrCloud
solrcloud 的部署其实有两种方式可选,那么我们在实践开发中应该怎样选择呢? 第一种:当启动solr服务器时,内嵌的启动一个Zookeeper服务器,然后将这些内嵌的Zookeeper服务器组成一个集群。 第二种:将Zookeeper服务器独立的配置一个集群,然后将solr交给Zookeeper进行管理
谈谈第一种:每启动一个solr服务器就内嵌的启动一个Zoo
- Java synchronized关键字详解
gqdy365
synchronized
转载自:http://www.cnblogs.com/mengdd/archive/2013/02/16/2913806.html
多线程的同步机制对资源进行加锁,使得在同一个时间,只有一个线程可以进行操作,同步用以解决多个线程同时访问时可能出现的问题。
同步机制可以使用synchronized关键字实现。
当synchronized关键字修饰一个方法的时候,该方法叫做同步方法。
当s
- js实现登录时记住用户名
hw1287789687
记住我记住密码cookie记住用户名记住账号
在页面中如何获取cookie值呢?
如果是JSP的话,可以通过servlet的对象request 获取cookie,可以
参考:http://hw1287789687.iteye.com/blog/2050040
如果要求登录页面是html呢?html页面中如何获取cookie呢?
直接上代码了
页面:loginInput.html
代码:
<!DOCTYPE html PUB
- 开发者必备的 Chrome 扩展
justjavac
chrome
Firebug:不用多介绍了吧https://chrome.google.com/webstore/detail/bmagokdooijbeehmkpknfglimnifench
ChromeSnifferPlus:Chrome 探测器,可以探测正在使用的开源软件或者 js 类库https://chrome.google.com/webstore/detail/chrome-sniffer-pl
- 算法机试题
李亚飞
java算法机试题
在面试机试时,遇到一个算法题,当时没能写出来,最后是同学帮忙解决的。
这道题大致意思是:输入一个数,比如4,。这时会输出:
&n
- 正确配置Linux系统ulimit值
字符串
ulimit
在Linux下面部 署应用的时候,有时候会遇上Socket/File: Can’t open so many files的问题;这个值也会影响服务器的最大并发数,其实Linux是有文件句柄限制的,而且Linux默认不是很高,一般都是1024,生产服务器用 其实很容易就达到这个数量。下面说的是,如何通过正解配置来改正这个系统默认值。因为这个问题是我配置Nginx+php5时遇到了,所以我将这篇归纳进
- hibernate调用返回游标的存储过程
Supanccy2013
javaDAOoracleHibernatejdbc
注:原创作品,转载请注明出处。
上篇博文介绍的是hibernate调用返回单值的存储过程,本片博文说的是hibernate调用返回游标的存储过程。
此此扁博文的存储过程的功能相当于是jdbc调用select 的作用。
1,创建oracle中的包,并在该包中创建的游标类型。
---创建oracle的程
- Spring 4.2新特性-更简单的Application Event
wiselyman
application
1.1 Application Event
Spring 4.1的写法请参考10点睛Spring4.1-Application Event
请对比10点睛Spring4.1-Application Event
使用一个@EventListener取代了实现ApplicationListener接口,使耦合度降低;
1.2 示例
包依赖
<p