其他相关文章见:《Lock与synchronized 的区别》
《可重入锁 介绍以及原理》
介绍Synchronized之前,我们先来看一下线程安全的相关概念。
造成线程安全问题的主要诱因有两点,一是存在共享数据(也称临界资源),二是存在多条线程共同操作共享数据。
因此,引入了互斥锁的概念,即一个共享数据只能被一个线程访问,其他线程需要等待(阻塞),直至当前线程处理完毕释放该锁。
so,synchronized方法就保证了同一时刻只有一个线程对方法或者代码块有共享数据的操作。而且,synchronized保证了一个线程对共享变量操作的变化被其他线程看到(可以替代volatile功能)。
Synchronized就是内置锁,是java语言特性提供的内置锁,其获得锁和释放锁是隐式的(进入代码块就是获得锁,走出代码就是释放锁)。
java.util.concurrent.locks 包中的锁是显示锁,需要进行lock和unlock。
首先,synchronized可以修饰类、方法(实例方法和静态方法)和代码块(修饰代码块实现同步),区别就是作用范围的不同:
修饰类的时候和修饰静态方法是一样的,都是给所有的对象加了同一把锁;
修饰实例方法时作用范围就是整个函数,给当前实例加锁;
修饰代码块时作用范围就是大括号内的内容,对给定的对象加锁。
其次,synchronized不能被继承,不能使用Synchronized关键字修饰接口方法;构造方法也不能用Synchronized。
几个简单理论:
当一个线程访问一个对象中的synchronized(this)同步代码块时,其他试图访问该对象的线程将被阻塞
当一个线程访问对象的一个synchronized(this)同步代码块时,另一个线程仍然可以访问该对象中的非synchronized(this)同步代码块。
指定要给某个对象加锁 ,synchronized (account)
public synchronized void method()//修饰实例方法
{
// todo
}
public void method()//同步代码块
{
synchronized(this) {
// todo
}
}
//以上这两种其实都是锁定了整个方法的内容
Tip:另外,有关修饰实例方法的注意事项,看下列代码:
public class AccountingSyncBad implements Runnable{
static int i=0;
public synchronized void increase(){
i++;
}
@Override
public void run() {
for(int j=0;j<1000000;j++){
increase();
}
}
public static void main(String[] args) throws InterruptedException {
AccountingSync instance=new AccountingSync();
Thread t1=new Thread(instance);
Thread t2=new Thread(instance);
t1.start();
t2.start();
t1.join();
t2.join();
System.out.println(i);
}
/**
* 输出结果:
* 2000000
*/
//下列main方法就不能实现同步,输出结果可能小于2000000
//原因是,此时就是两个线程分别new了两个实例,两个实例对象锁并不相同,两个线程对共享数据的操作就无法保证线程安全。
//当前 非共享数据是安全的。
/* public static void main(String[] args) throws InterruptedException {
//new新实例
Thread t1=new Thread(new AccountingSyncBad());
//new新实例
Thread t2=new Thread(new AccountingSyncBad());
t1.start();
t2.start();
//join含义:当前线程A等待thread线程终止之后才能从thread.join()返回
t1.join();
t2.join();
System.out.println(i);
}*/
}
直接上代码:
public class AccountingSync implements Runnable{
static AccountingSync instance=new AccountingSync(); //注意要声明instance为静态变量
static int i=0;
@Override
public void run() {
//省略其他耗时操作....
//使用同步代码块对变量i进行同步操作,锁对象为给定的实例对象:instance
synchronized(instance){
for(int j=0;j<1000000;j++){
i++;
}
}
}
public static void main(String[] args) throws InterruptedException {
Thread t1=new Thread(instance);
Thread t2=new Thread(instance);
t1.start();t2.start();
t1.join();t2.join();
System.out.println(i);
}
}
另外,除了instance作为对象外,我们还可以使用this对象(代表当前实例)或者当前类的class对象作为锁,如下代码:
//this,当前实例对象锁
synchronized(this){
for(int j=0;j<1000000;j++){
i++;
}
}
//class对象锁,相当于修饰了静态方法
synchronized(AccountingSync.class){
for(int j=0;j<1000000;j++){
i++;
}
}
当synchronized作用于静态方法时,其锁就是当前类的class对象锁。由于静态成员不专属于任何一个实例对象,是类成员,因此通过class对象锁可以控制静态 成员的并发操作。
需要注意的是如果一个线程A调用一个实例对象的非static synchronized方法,而线程B需要调用这个实例对象所属类的静态 synchronized方法,是允许的,不会发生互斥现象,因为访问静态 synchronized 方法占用的锁是当前类的class对象,而访问非静态 synchronized 方法占用的锁是当前实例对象锁。
public class AccountingSyncClass implements Runnable{
static int i=0;
/**
* 作用于静态方法,锁是当前class对象,也就是
* AccountingSyncClass类对应的class对象
*/
public static synchronized void increase(){
i++;
}
/**
* 非静态,其对象锁是当前实例对象,如果别的线程调用该方法,不一定发生互斥
* 但我们应该意识到这种情况下可能会发现线程安全问题(操作了共享静态变量i)
*/
public synchronized void increase4Obj(){
i++;
}
@Override
public void run() {
for(int j=0;j<1000000;j++){
increase();
}
}
public static void main(String[] args) throws InterruptedException {
//new新实例
Thread t1=new Thread(new AccountingSyncClass());
//new新实例
Thread t2=new Thread(new AccountingSyncClass());
//启动线程
t1.start();t2.start();
t1.join();t2.join();
System.out.println(i);
}
//操作结果还是i为2000000
}
synchronized是可重入锁:
当一个线程再次请求自己持有对象锁的临界资源时,这种情况属于重入锁。
在java中synchronized是基于原子性的内部锁机制,是可重入的,因此在一个线程调用synchronized方法的同时在其方法体内部调用该对象另一个synchronized方法,也就是说一个线程得到一个对象锁后再次请求该对象锁,是允许的,这就是synchronized的可重入性。
public class AccountingSync implements Runnable{
static AccountingSync instance=new AccountingSync();
static int i=0;
static int j=0;
@Override
public void run() {
for(int j=0;j<1000000;j++){
//this,当前实例对象锁
synchronized(this){
i++;
increase(); //允许。synchronized的可重入性
}
}
}
public synchronized void increase(){
j++;
}
public static void main(String[] args) throws InterruptedException {
Thread t1=new Thread(instance);
Thread t2=new Thread(instance);
t1.start();t2.start();
t1.join();t2.join();
System.out.println(i);
}
}
需要特别注意另外一种情况,当子类继承父类时,子类也是可以通过可重入锁调用父类的同步方法。
注意由于synchronized是基于monitor实现的,因此每次重入,monitor中的计数器仍会加1。
这个就是可重入锁的实现原理:《可重入锁 介绍以及原理》
关于monitor的介绍,详见:《Monitor》
以及《对象在内存中的存储&&基本类型和包装类&&java类型转换》
这里只附上一个图,作为提示:
Mark Word存储结构不是定死的,还可能有如下结构:
重量级锁也就是通常说synchronized的对象锁,锁标识位为10,其中指针指向的是monitor对象(也称为管程或监视器锁)的起始地址。
每个对象都存在着一个 monitor 与之关联,对象与其 monitor 之间的关系有存在多种实现方式,如monitor可以与对象一起创建销毁或当线程试图获取对象锁时自动生成,但当一个 monitor 被某个线程持有后,它便处于锁定状态。
在Java虚拟机(HotSpot)中,monitor是由ObjectMonitor实现的,其主要数据结构如下(位于HotSpot虚拟机源码ObjectMonitor.hpp文件,C++实现的):
ObjectMonitor() {
_header = NULL;
_count = 0; //记录个数
_waiters = 0,
_recursions = 0;
_object = NULL;
_owner = NULL; //_owner指向持有ObjectMonitor对象的线程
_WaitSet = NULL; //处于wait状态的线程,会被加入到_WaitSet
_WaitSetLock = 0 ;
_Responsible = NULL ;
_succ = NULL ;
_cxq = NULL ;
FreeNext = NULL ;
_EntryList = NULL ; //处于等待锁block状态的线程,会被加入到该列表
_SpinFreq = 0 ;
_SpinClock = 0 ;
OwnerIsThread = 0 ;
}
ObjectMonitor中有两个队列,_WaitSet 和 _EntryList,用来保存ObjectWaiter对象列表( 每个等待锁的线程都会被封装成ObjectWaiter对象);
整个monitor运行的机制过程如下:
_owner指向持有ObjectMonitor对象的线程,当多个线程同时访问一段同步代码时,首先会进入 _EntryList 集合,当线程获取到对象的monitor 后进入 _Owner 区域并把monitor中的owner变量设置为当前线程同时monitor中的计数器count加1,若线程调用 wait() 方法,将释放当前持有的monitor,owner变量恢复为null,count自减1,同时该线程进入 WaitSe t集合中等待被唤醒。若当前线程执行完毕也将释放monitor(锁)并复位变量的值,以便其他线程进入获取monitor(锁)。
具体见下图:
因此,monitor对象存在于每个Java对象的对象头中(存储的指针的指向),synchronized锁便是通过这种方式获取锁的,也是为什么Java中任意对象可以作为锁的原因,同时也是notify/notifyAll/wait等方法存在于顶级对象Object中的原因(下文会提到)。
正如中断二字所表达的意义,在线程运行(run方法)中间打断它,在Java中,提供了以下3个有关线程中断的方法:
//中断线程(实例方法)
public void Thread.interrupt();
//判断线程是否被中断(实例方法)
public boolean Thread.isInterrupted();
//判断是否被中断并清除当前中断状态(静态方法)
public static boolean Thread.interrupted();
中断的两种情况:
一种是当线程处于阻塞状态或者试图执行一个阻塞操作时,我们可以使用实例方法interrupt()进行线程中断,执行中断操作后将会抛出interruptException异常(该异常必须捕捉无法向外抛出)并将中断状态复位;
public class InterruputSleepThread3 {
public static void main(String[] args) throws InterruptedException {
Thread t1 = new Thread() {
@Override
public void run() {
//while在try中,通过异常中断就可以退出run循环
try {
while (true) {
//当前线程处于阻塞状态,异常必须捕捉处理,无法往外抛出
TimeUnit.SECONDS.sleep(2);
}
} catch (InterruptedException e) {
System.out.println("Interruted When Sleep");
boolean interrupt = this.isInterrupted();
//中断状态被复位
System.out.println("interrupt:"+interrupt);
}
}
};
t1.start();
TimeUnit.SECONDS.sleep(2);
//中断处于阻塞状态的线程
t1.interrupt();
/**
* 输出结果:
Interruted When Sleep
interrupt:false
*/
}
}
上述代码中为啥不用Thread.sleep(2000);而用TimeUnit.SECONDS.sleep(2);
前者使用时并没有明确的单位说明,而后者非常明确表达秒的单位,事实上后者的内部实现最终还是调用了Thread.sleep(2000);,但为了编写的代码语义更清晰,建议使用TimeUnit.SECONDS.sleep(2);的方式,注意TimeUnit是个枚举类型。
另外一种是当线程处于运行状态时,我们也可调用实例方法interrupt()进行线程中断,但同时必须手动判断中断状态,并编写中断线程的代码(其实就是结束run方法体的代码)。有时我们在编码时可能需要兼顾以上两种情况,那么就可以如下编写:
public class InterruputThread {
public static void main(String[] args) throws InterruptedException {
Thread t1=new Thread(){
@Override
public void run(){
while(true){
//判断当前线程是否被中断,并跳出运行循环
if (this.isInterrupted()){
System.out.println("线程中断");
break;
}
}
System.out.println("已跳出循环,线程中断!");
}
};
t1.start();
TimeUnit.SECONDS.sleep(2);
t1.interrupt();//注意非阻塞状态调用interrupt()并不会导致中断状态重置。
/**
* 输出结果:
线程中断
已跳出循环,线程中断!
*/
}
}
上述两种情况可以兼顾:
public void run(){
try {
//判断当前线程是否已中断,注意interrupted方法是静态的,执行后会对中断状态进行复位
while (!Thread.interrupted()) {
TimeUnit.SECONDS.sleep(2);
}
} catch (InterruptedException e) {
}
}
上面关于中断说了这么多,其实对于synchronized来说,如果一个线程在等待锁,那么结果只有两种,要么它获得这把锁继续执行,要么它就保存等待,即使调用中断线程的方法,也不会生效。
演示代码:
public class SynchronizedBlocked implements Runnable{
public synchronized void f() {
System.out.println("Trying to call f()");
while(true) // 从未释放锁
Thread.yield();
}
/**
* 在构造器中创建新线程并启动获取对象锁
*/
public SynchronizedBlocked() {
//该线程已持有当前实例锁
new Thread() {
public void run() {
f(); // Lock acquired by this thread
}
}.start();
}
public void run() {
//中断判断
while (true) {
if (Thread.interrupted()) {
System.out.println("中断线程!!");
break;
} else {
f();
}
}
}
public static void main(String[] args) throws InterruptedException {
SynchronizedBlocked sync = new SynchronizedBlocked();
Thread t = new Thread(sync);
//启动后调用f()方法,无法获取当前实例锁处于等待状态
t.start();
TimeUnit.SECONDS.sleep(1);
//中断线程,无法生效
t.interrupt();
}
}
我们在SynchronizedBlocked构造函数中创建一个新线程并启动获取调用f()获取到当前实例锁,由于SynchronizedBlocked自身也是线程,启动后在其run方法中也调用了f(),但由于对象锁被其他线程占用,导致t线程只能等到锁,此时我们调用了t.interrupt();但并不能中断线程。
这里我们讲的等待唤醒指的是notify/notifyAll和wait方法。在使用这3个方法时,必须处于synchronized代码块或者synchronized方法中,否则就会抛出IllegalMonitorStateException异常,这是因为调用这几个方法前必须拿到当前对象的监视器monitor对象,也就是说notify/notifyAll和wait方法依赖于monitor对象。
我们知道monitor 存在于对象头的Mark Word 中(存储monitor引用指针),而synchronized关键字可以获取 monitor ,这也就是为什么notify/notifyAll和wait方法必须在synchronized代码块或者synchronized方法调用的原因。
synchronized (obj) {
obj.wait();
obj.notify();
obj.notifyAll();
}
与sleep方法不同的是wait方法调用完成后,线程将被暂停,但wait方法将会释放当前持有的监视器锁(monitor),直到有线程调用notify/notifyAll方法后方能继续执行,而sleep方法只让线程休眠并不释放锁。
同时notify/notifyAll方法调用后,并不会马上释放监视器锁,而是在相应的synchronized(){}/synchronized方法执行结束后才自动释放锁。