Matplotlib 及 Seaborn 使用教程 3

一、实验介绍--使用 Matplotlib 绘制 3D 图

1.1 实验内容

Matplotlib 是支持 Python 语言的开源绘图库,因为其支持丰富的绘图类型、简单的绘图方式以及完善的接口文档,深受 Python 工程师、科研学者、数据工程师等各类人士的喜欢。这是 Matplotlib 绘图课程的第 3 章节,将带你了解 3D 图像绘制。

1.2 实验知识点

  • Matplotlib 绘制 3D 图像

1.3 实验环境

  • python2.7
  • Xfce 终端
  • ipython 终端

1.4 适合人群

本课程难度为一般,属于初级级别课程,适合具有 Python 基础,并对使用 Matplotlib 绘图感兴趣的用户。

二、三维绘图

2.1 mplot3d 绘图模块介绍

前面,我们已经了解了如果使用 Matplotlib 中的 pyplot 模块绘制简单的 2D 图像。其实,Matplotlib 也可以绘制 3D 图像,与二维图像不同的是,绘制三维图像主要通过 mplot3d 模块实现。但是,使用 Matplotlib 绘制三维图像实际上是在二维画布上展示,所以一般绘制三维图像时,同样需要载入 pyplot 模块。

mplot3d 模块下主要包含 4 个大类,分别是:

  • mpl_toolkits.mplot3d.axes3d()
  • mpl_toolkits.mplot3d.axis3d()
  • mpl_toolkits.mplot3d.art3d()
  • mpl_toolkits.mplot3d.proj3d()

其中,axes3d() 下面主要包含了各种实现绘图的类和方法。axis3d() 主要是包含了和坐标轴相关的类和方法。art3d() 包含了一些可将 2D 图像转换并用于 3D 绘制的类和方法。proj3d() 中包含一些零碎的类和方法,例如计算三维向量长度等。

一般情况下,我们用到最多的就是 mpl_toolkits.mplot3d.axes3d() 下面的 mpl_toolkits.mplot3d.axes3d.Axes3D() 类,而 Axes3D() 下面又存在绘制不同类型 3D 图的方法。你可以通过下面的方式导入 Axes3D()

from mpl_toolkits.mplot3d.axes3d import Axes3D

由于 Axes3D() 十分常用,所以 Matplotlib 支持更加方便地导入。

from mpl_toolkits.mplot3d import Axes3D

2.2 三维散点图

接下来,通过一个简单的例子,来看一看绘制三维图像具体需要几个步骤。代码均在 ipython 终端执行,你可以通过在线环境左下角的应用程序菜单 > 附件打开。

首先,我们导入 numpy 随机生成一组数据。

import numpy as np

# x, y, z 均为 0 到 1 之间的 100 个随机数
x = np.random.normal(0, 1, 100)
y = np.random.normal(0, 1, 100)
z = np.random.normal(0, 1, 100)

接下来,开始绘图。第一步是载入 2D, 3D 绘图模块。

from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt

第二步,使用 Axes3D() 创建 3D 图形对象。

fig = plt.figure()
ax = Axes3D(fig)

最后,调用散点图绘制方法绘图并显示出来。

ax.scatter(x, y, z)

plt.show()

除开生成数据和模块导入,实际上只用了 4 行短小的代码就绘制出了一幅三维散点图像。

你可以通过鼠标拖动图像,从不同的视角查看该 3D 图像。

2.3 三维线型图

线形图和散点图相似,需要传入 x, y, z 三个坐标的数值。详细的代码如下。

# 载入模块
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
import numpy as np

# 生成数据
x = np.linspace(-6 * np.pi, 6 * np.pi, 1000)
y = np.sin(x)
z = np.cos(x)

# 创建 3D 图形对象
fig = plt.figure()
ax = Axes3D(fig)

# 绘制线型图
ax.plot(x, y, z)

# 显示图
plt.show()

2.4 三维柱状图

绘制完线型图,我们继续尝试绘制三维柱状图,其实它的绘制步骤和上面同样非常相似。

# 载入模块
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
import numpy as np

# 创建 3D 图形对象
fig = plt.figure()
ax = Axes3D(fig)

# 生成数据并绘图
x = [0, 1, 2, 3, 4, 5, 6]
for i in x:
    y = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
    z = abs(np.random.normal(1, 10, 10))
    ax.bar(y, z, i, zdir='y', color=['r', 'g', 'b', 'y'])

plt.show()

这里在 ipython 终端中输入时,注意代码的缩进。

2.5 三维图曲面图

接下来需要绘制的三维曲面图要麻烦一些,我们需要对数据进行矩阵处理。其实和画二维等高线图很相似,只是多增加了一个维度。

# 载入模块
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D

# 创建 3D 图形对象
fig = plt.figure()
ax = Axes3D(fig)

# 生成数据
X = np.arange(-2, 2, 0.1)
Y = np.arange(-2, 2, 0.1)
X, Y = np.meshgrid(X, Y)
Z = np.sqrt(X ** 2 + Y ** 2)

# 绘制曲面图,并使用 cmap 着色
ax.plot_surface(X, Y, Z, cmap=plt.cm.winter)

plt.show()

cmap=plt.cm.winter 表示采用了 winter 配色方案,也就是下图的渐变色。

2.6 混合图绘制

混合图就是将两种不同类型的图绘制在一张图里。绘制混合图一般有前提条件,那就是两种不同类型图的范围大致相同,否则将会出现严重的比例不协调,而使得混合图失去意义。

# -*- coding: utf-8 -*
# 载入模块
from mpl_toolkits.mplot3d import Axes3D
import numpy as np
import matplotlib.pyplot as plt

# 创建 3D 图形对象
fig = plt.figure()
ax = Axes3D(fig)

# 生成数据并绘制图 1
x1 = np.linspace(-3 * np.pi, 3 * np.pi, 500)
y1 = np.sin(x1)
ax.plot(x1, y1, zs=0, c='red')

# 生成数据并绘制图 2
x2 = np.random.normal(0, 1, 100)
y2 = np.random.normal(0, 1, 100)
z2 = np.random.normal(0, 1, 100)
ax.scatter(x2, y2, z2)

# 显示图
plt.show()

2.7 子图绘制

前面的章节已经介绍了二维子图的绘制,其实三维情况下也是一样的。我们可以将二维图像和三维图像绘制在一起,又或者将几个三维图像绘制在一起。

这里我们就拿上面绘制过的线形图和曲面图为例,看一看需要增删哪些代码。

# -*- coding: utf-8 -*
# 载入模块
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
import numpy as np

# 创建 1 张画布
fig = plt.figure()

#===============

# 向画布添加子图 1 
ax1 = fig.add_subplot(1, 2, 1, projection='3d')

# 生成子图 1 数据
x = np.linspace(-6 * np.pi, 6 * np.pi, 1000)
y = np.sin(x)
z = np.cos(x)

# 绘制第 1 张图
ax1.plot(x, y, z)

#===============

# 向画布添加子图 2
ax2 = fig.add_subplot(1, 2, 2, projection='3d')

# 生成子图 2 数据
X = np.arange(-2, 2, 0.1)
Y = np.arange(-2, 2, 0.1)
X, Y = np.meshgrid(X, Y)
Z = np.sqrt(X ** 2 + Y ** 2)

# 绘制第 2 张图
ax2.plot_surface(X, Y, Z, cmap=plt.cm.winter)

# 显示图
plt.show()

我们可以来看一下这些代码。由于两张子图是绘制在 1 张画布上面的,所以这里需要提前创建 1 张画布。然后通过 .add_subplot() 添加子图,子图序号和二维绘图相似,只是注意 3D 绘图时要添加 projection='3d' 参数。

三、实验总结

本次实验主要是学会如果使用 Matplotlib 完成简单的 3D 绘图。你会发现,三维绘图其实就是在二维绘图上的演变。二者的区别重点在两个方面,首先需要建一个了三维画布,其次需要多输入一个维度值,即 z 值。

在 Matplotlib 中,它们之间会共享一些参数。例如,当你在三维空间中绘制线型图时,二维图中对线的颜色、粗细、标记点的样式等参数均可直接使用。

你可能感兴趣的:(实验楼课程,机器学习)