需求如下:
有如图所示的输入文件。其中第一列代表ip地址,之后的偶数列代表搜索词,数字(奇数列)代表搜索次数,使用"\t"分隔。现在需要对搜索词进行分词并统计词频,此处不考虑搜索次数,可能是翻页,亦不考虑搜索链接的行为。
这里中文分词使用了IK分词包,直接将源码放入src中。感谢IK分词。
程序如下:
package seg;
import java.io.ByteArrayInputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.io.Reader;
import java.util.ArrayList;
import java.util.List;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;
import org.wltea.analyzer.core.IKSegmenter;
import org.wltea.analyzer.core.Lexeme;
/**
* @author zhf
* @version 创建时间:2014年8月16日 下午3:04:40
*/
public class SegmentTool extends Configured implements Tool{
public static void main(String[] args) throws Exception {
int exitCode = ToolRunner.run(new SegmentTool(), args);
System.exit(exitCode);
}
@Override
public int run(String[] arg0) throws Exception {
Configuration conf = new Configuration();
String[] args = new GenericOptionsParser(conf,arg0).getRemainingArgs();
if(args.length != 2){
System.err.println("Usage:seg.SegmentTool
打包后,执行命令:yarn jar seg.jar seg.SegmentTool /test/user/zhf/input /test/user/zhf/output
输出结果部分如下:
阿迪达斯 1
附近 2
陈 22
陈乔恩 1
陈奕迅 1
陈毅 2
限额 4
陕西 4
除个别 1
隐私 1
隔壁 1
集成 4
集锦 1
雨中 2
雪 5
露 1
青 7
青岛 2
但是并没有排序,如果数据量比较小,可以采用linux命令:sort -k2 -n -r kw_result.txt > kw_freq.txt进行排序。
数据量大的话,可以将结果导入Hive,因为只有两列了,hive -e "select key,count from kw_table sort by count desc;" > kw_freq.txt 即可得到有序的结果。
亦可以将之前的ouput作为下一个job的input,实现排序。需要反转map输出的key和value。
代码如下:
package seg;
import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.io.WritableComparator;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;
/**
* @author zhf
* @version 创建时间:2014年8月16日 下午4:51:00
*/
public class SortByFrequency extends Configured implements Tool{
public static void main(String[] args) throws Exception {
int exitCode = ToolRunner.run(new SortByFrequency(), args);
System.exit(exitCode);
}
@Override
public int run(String[] arg0) throws Exception {
Configuration conf = new Configuration();
String[] args = new GenericOptionsParser(conf,arg0).getRemainingArgs();
if(args.length != 2){
System.err.println("Usage:seg.SortByFrequency
的 175
上海 158
上 85
都市 76
在 71
ppt 64
运输 58
电视 58
式 58
2 52