1.1 进程的概念
我之前在操作系统这门课中学过的有关进程的概念如下:
从操作系统层面上讲:进程是程序的一次执行过程,是系统进行资源分配和处理机调度的一个独立单位。进程的结构特性:进程=程序段+数据段+进程控制块。进程的三种基本状态:
对于一个程序来说,是不是只要不在执行状态,就一定不是进程呢?
不是。假如在单处理机的系统中,一次只能执行一个进程,即只有一个进程处于执行状态,那么其他的被加载到内存的程序(已经获得了除处理机之外的所需的全部资源),
也是进程。
从内核的层面上讲:进程担当分配系统资源(包括内存等)的实体。 进程的两个基本元素是程序代码(可能与其他进程共享)和与代码相关联的数据集(这个是私有的)。这与进程的结构特性是一样的:进程=程序段+数据段+进程控制块。“。数据集就是指的是数据段和进程控制块。其中代码段是共享的,数据段是私有的。
1.2 进程控制块(PCB)
当一个程序加载到内存当中,计算机系统中就有了一个进程。每个进程在内核中都有一个进程控制块(PCB)来维护自身进程的信息,这个进程控制块(PCB)是为了方便进行进程管理所设置的一个数据结构,里面存放的是进程的相关信息。也就是说,进程管理管理的是PCB。
进程控制块(PCB)具体起什么作用?在单处理机系统,我们每次只能执行一个进程,我们如何知道是哪个进程在执行?执行完这个进程之后,又需要去执行哪些进程?假如一个进程由于种种原因,需要被中断,那么之后再来执行此进程的时候,我们怎么会知道之前执行到哪,等等情形,所以就需要进程控制块。通过分析以上的种种情况,我们得出:进程控制块至少应该包含进程标识(是进程的唯一标识,PID),还有进程的优先级,记录进程的上下文信息,记录进程下一次下一条指令的地址,进程中的程序的地址,等等。当操作系统要调度某进程去执行时,要从该进程的PCB中查询进程的优先级和现行状态;当系统调度到某个进程时,要根据PCB中保存的现行信息先去恢复现场,然后再去修改进程的状态,根据程序的地址,找到程序的位置,并开始执行;当进程由于某个原因需要暂停时,就必须将现行状态保存在PCB中,并记录下一条指令的地址。可见,在进程的整个执行过程中,进程控制块都起着非常重要的作用。
Linux内核的进程控制块是task_struct结构体,task_struct是Linux内核的一种数据结构,它会被装载到RAM里并且包含着进程的信息。每个进程都把它的信息放在task_struct这个数据结构里,task_struct里包含了这些进程信息:
标识符、状态、优先级、程序计数器、内存指针、上下文数据、I/O状态信息、记账信息。
在Linux系统中,所有运行在系统里的进程都是task_struct链表的形式存在内核里。见下图:
下面,我们开始剖析task_struct结构体。
1.3 task_struct结构体
centos6.5 Linux内核下,打开/usr/src/kernels/2.6.32-431.el6.i686/include/linux/sched.h 可以找到task_struct的定义。
1>进程状态(state)
volatile long state;
int exit_state;
进程可能出现的状态如下:
#define TASK_RUNNING 0
#define TASK_INTERRUPTIBLE 1
#define TASK_UNINTERRUPTIBLE 2
#define __TASK_STOPPED 4
#define __TASK_TRACED 8
/* in tsk->exit_state */
#define EXIT_ZOMBIE 16
#define EXIT_DEAD 32
/* in tsk->state again */
#define TASK_DEAD 64
#define TASK_WAKEKILL 128
#define TASK_WAKING 256
2>进程标识符(PID)
pid_t pid;//进程的唯一标识
pid_t tgid;// 线程组的领头线程的pid成员的值
PID的取值范围是0到32767,即系统中的进程数最大为32768个。
在Linux系统中,一个线程组中的所有线程使用和该线程组的领头线程(该组中的第一个轻量级进程)相同的PID,并被存放在tgid成员中。(线程是程序运行的最小单位,进程是程序运行的基本单位。)
3>进程内核栈
void *stack
stack用来维护分配给进程的内核栈,内核栈的意义在于,进程task_struct所占的内存是由内核动态分配的,确切的说就是内核根本不给task_struct分配内存,只给内核栈分配8KB内存,并且一部分会提供给task_struct使用。
task_struct结构体大约占用的大小为1K左右,根据内核版本的不同,大小也会有差异。
所以,也就可以知道内核栈最大也就是7KB,否则,内核栈会覆盖task_struct结构。
Linux内核通过thread_union联合体来表示进程的内核栈.
union thread_union {
struct thread_info thread_info;
unsigned long stack[THREAD_SIZE/sizeof(long)];
};
4>标记
unsigned int flags; /* per process flags, defined below */
用来反映一个进程的状态信息,但不是运行状态,用于内核识别进程当前的状态,flags成员的可能取值如下:
/*
* Per process flags
*/
#define PF_ALIGNWARN 0x00000001 /* Print alignment warning msgs */
/* Not implemented yet, only for 486*/
#define PF_STARTING 0x00000002 /* being created */
#define PF_EXITING 0x00000004 /* getting shut down */
#define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */
#define PF_VCPU 0x00000010 /* I'm a virtual CPU */
#define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */
#define PF_MCE_PROCESS 0x00000080 /* process policy on mce errors */
#define PF_SUPERPRIV 0x00000100 /* used super-user privileges */
#define PF_DUMPCORE 0x00000200 /* dumped core */
#define PF_SIGNALED 0x00000400 /* killed by a signal */
#define PF_MEMALLOC 0x00000800 /* Allocating memory */
#define PF_FLUSHER 0x00001000 /* responsible for disk writeback */
#define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */
#define PF_FREEZING 0x00004000 /* freeze in progress. do not account to load */
#define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */
#define PF_FROZEN 0x00010000 /* frozen for system suspend */
#define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */
#define PF_KSWAPD 0x00040000 /* I am kswapd */
#define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
#define PF_KTHREAD 0x00200000 /* I am a kernel thread */
#define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */
#define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
#define PF_SPREAD_PAGE 0x01000000 /* Spread page cache over cpuset */
#define PF_SPREAD_SLAB 0x02000000 /* Spread some slab caches over cpuset */
#define PF_THREAD_BOUND 0x04000000 /* Thread bound to specific cpu */
#define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
#define PF_MEMPOLICY 0x10000000 /* Non-default NUMA mempolicy */
#define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
#define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezeable */
#define PF_FREEZER_NOSIG 0x80000000 /* Freezer won't send signals to it */
5>表示进程亲属关系的成员
struct task_struct *real_arent; /* real parent process */
struct task_struct *parent; /* recipient of SIGCHLD, wait4() reports */
struct list_head children; /* list of my children */
struct list_head sibling; /* linkage in my parent's children list */
struct task_struct *group_leader; /* threadgroup leader */
在Linux系统中,所有进程之间都有着直接或间接地联系,每个进程都有其父进程,也可能有零个或多个子进程。拥有同一父进程的所有进程具有兄弟关系。
real_parent指向其父进程,如果创建它的父进程不再存在,则指向PID为1的init进程。
parent指向其父进程,当它终止时,必须向它的父进程发送信号。它的值通常与real_parent相同。
children表示链表的头部,链表中的所有元素都是它的子进程。
sibling用于把当前进程插入到兄弟链表中。
group_leader指向其所在进程组的领头进程。
6>进程调度
int prio, static_prio, normal_prio;
unsigned int rt_priority;
const struct sched_class *sched_class;
struct sched_entity se;
struct sched_rt_entity rt;
unsigned int policy;
cpumask_t cpus_allowed;
prio用于保存动态优先级。
unsigned int policy;
const struct sched_class *sched_class;
struct sched_entity se;
struct sched_rt_entity rt;
#define SCHED_NORMAL 0//按照优先级进行调度(有些地方也说是CFS调度器)
#define SCHED_FIFO 1//先进先出的调度算法
#define SCHED_RR 2//时间片轮转的调度算法
#define SCHED_BATCH 3//用于非交互的处理机消耗型的进程
#define SCHED_IDLE 5//系统负载很低时的调度算法
#define SCHED_RESET_ON_FORK 0x40000000
unsigned int ptrace;
struct list_head ptraced;
struct list_head ptrace_entry;
ptrace是一种提供父进程控制子进程运行,并且可以检查和改变它的核心image。当trace设置为0时不需要被跟踪。
8>性能诊断工具——Performance Event
#ifdef CONFIG_PERF_EVENTS
#ifndef __GENKSYMS__
void * __reserved_perf__;
#else
struct perf_event_context *perf_event_ctxp;
#endif
struct mutex perf_event_mutex;
struct list_head perf_event_list;
#endif
PerformanceEvent是一款随 Linux 内核代码一同发布和维护的性能诊断工具。这些成员用于帮PerformanceEvent分析进程的性能问题。
9>进程的地址空间
struct mm_struct *mm, *active_mm;
mm 进程所拥有的用户空间的内存描述符
active_mm 指向进程运行时使用的内存描述符,对于普通的进程来说,mm和active_mm是一样的,但是内核线程是没有进程地址空间的,所以内核线程的mm是空的,所以需要初始化内核线程的active_mm |
10>时间与定时器
一个进程从创建到终止叫做该进程的生存期。进程在其生存期内使用CPU的时间,内核都要进行记录,以便进行统计、计费等有关操作。进程耗费CPU的时间由两部分组成:一是在用户模式(或称为用户态)下耗费的时间、一是在系统模式(或称为系统态)下耗费的时间。每个时钟滴答,也就是每个时钟中断,内核都要更新当前进程耗费CPU的时间信息。描述CPU时间的内容如下:
cputime_t utime, stime, utimescaled, stimescaled;
cputime_t gtime;
cputime_t prev_utime, prev_stime;
unsigned long nvcsw, nivcsw;
struct timespec start_time;
struct timespec real_start_time;
unsigned long min_flt, maj_flt;
struct task_cputime cputime_expires;
struct list_head cpu_timers[3];
struct list_head run_list;
unsigned long timeout;//当前已使用的时间(与开始时间的差值)
unsigned int time_slice;//进程的时间片的大小
int nr_cpus_allowed;
进程有三种类型的定时器:实时定时器、虚拟定时器和概况定时器。这三种定时器的特征共有三个:到期时间、定时间隔、要触发的事件。
11>判断标志
//用于进程判断标志
int exit_state;
int exit_code, exit_signal;
int pdeath_signal;
unsigned int personality;
unsigned did_exec:1;
unsigned in_execve:1;
unsigned in_iowait:1;
unsigned sched_reset_on_fork:1;
exit_state 进程终止的状态
exit_code 设置进程的终止代号
exit_signal 设置为-1的时候表示是某个线程组当中的一员,只有当线程组的最后一个成员终止时,才会产生型号给父进程
pdeath_signal 用来判断父进程终止时的信号
12>信号处理信息
struct signal_struct *signal; //指向进程信号描述符
struct sighand_struct *sighand; //指向进程信号处理程序描述符
sigset_t blocked, real_blocked; //阻塞信号的掩码
sigset_t saved_sigmask;
struct sigpending pending; //进程上还需要处理的信号
unsigned long sas_ss_sp; //信号处理程序备用堆栈的地址
size_t sas_ss_size; //信号处理程序的堆栈的地址
13>文件系统信息
进程可以打开或关闭文件,文件属于系统资源,Linux内核要对进程使用文件的情况进行记录。task_struct结构中有两个数据结构用于描述进程与文件相关的信息。其中,fs_struct中描述了两个VFS索引节点,这两个索引节点叫做root和pwd。file_struct结构用来记录了进程打开的文件的描述符。
//文件系统信息结构体
struct fs_struct *fs;
//打开文件相关信息结构体
struct files_struct *files;
struct fs_struct *fs 进程可执行镜像所在的文件系统
struct files_struct *files 进程当前打开的文件
14>task_struct的完整定义及注释
struct task_struct {
//进程状态(-1就绪态,0运行态,>0停止态)
volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
//进程内核栈
void *stack;
//有几个进程只在使用此结构
atomic_t usage;
//标记
unsigned int flags; /* per process flags, defined below */
//ptrace系统调用,关于实现断点调试,跟踪进程运行。
unsigned int ptrace;
//锁的深度
int lock_depth; /* BKL lock depth */
//SMP实现无加锁的进程切换
#ifdef CONFIG_SMP
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
int oncpu;
#endif
#endif
//关于进程调度
int prio, static_prio, normal_prio;
//优先级
unsigned int rt_priority;
//关于进程
const struct sched_class *sched_class;
struct sched_entity se;
struct sched_rt_entity rt;
//preempt_notifier结构体链表
#ifdef CONFIG_PREEMPT_NOTIFIERS
/* list of struct preempt_notifier: */
struct hlist_head preempt_notifiers;
#endif
/*
* fpu_counter contains the number of consecutive context switches
* that the FPU is used. If this is over a threshold, the lazy fpu
* saving becomes unlazy to save the trap. This is an unsigned char
* so that after 256 times the counter wraps and the behavior turns
* lazy again; this to deal with bursty apps that only use FPU for
* a short time
*/
//FPU使用计数
unsigned char fpu_counter;
//块设备I/O层的跟踪工具
#ifdef CONFIG_BLK_DEV_IO_TRACE
unsigned int btrace_seq;
#endif
//进程调度策略相关的字段
unsigned int policy;
cpumask_t cpus_allowed;
//RCU同步原语
#ifdef CONFIG_TREE_PREEMPT_RCU
int rcu_read_lock_nesting;
char rcu_read_unlock_special;
struct rcu_node *rcu_blocked_node;
struct list_head rcu_node_entry;
#endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
//用于调度器统计进程运行信息
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
struct sched_info sched_info;
#endif
//用于构架进程链表
struct list_head tasks;
struct plist_node pushable_tasks;
//关于进程的地址空间,指向进程的地址空间。(链表和红黑树)
struct mm_struct *mm, *active_mm;
/* task state */
//进程状态参数
int exit_state;
//退出信号处理
int exit_code, exit_signal;
//接收父进程终止的时候会发送信号
int pdeath_signal; /* The signal sent when the parent dies */
/* ??? */
unsigned int personality;
unsigned did_exec:1;
unsigned in_execve:1; /* Tell the LSMs that the process is doing an
* execve */
unsigned in_iowait:1;
/* Revert to default priority/policy when forking */
unsigned sched_reset_on_fork:1;
//进程pid,父进程ppid。
pid_t pid;
pid_t tgid;
//防止内核堆栈溢出
#ifdef CONFIG_CC_STACKPROTECTOR
/* Canary value for the -fstack-protector gcc feature */
unsigned long stack_canary;
#endif
/*
* pointers to (original) parent process, youngest child, younger sibling,
* older sibling, respectively. (p->father can be replaced with
* p->real_parent->pid)
*/
//这部分是用来进行维护进程之间的亲属关系的。
//初始化父进程
struct task_struct *real_parent; /* real parent process */
//接纳终止的进程
struct task_struct *parent; /* recipient of SIGCHLD, wait4() reports */
/*
* children/sibling forms the list of my natural children
*/
//维护子进程链表
struct list_head children; /* list of my children */
//兄弟进程链表
struct list_head sibling; /* linkage in my parent's children list */
//线程组组长
struct task_struct *group_leader; /* threadgroup leader */
/*
* ptraced is the list of tasks this task is using ptrace on.
* This includes both natural children and PTRACE_ATTACH targets.
* p->ptrace_entry is p's link on the p->parent->ptraced list.
*/
//ptrace,系统调用,关于断点调试。
struct list_head ptraced;
struct list_head ptrace_entry;
//PID与PID散列表的联系
/* PID/PID hash table linkage. */
struct pid_link pids[PIDTYPE_MAX];
//维护一个链表,里面有该进程所有的线程
struct list_head thread_group;
//do_fork()函数
struct completion *vfork_done; /* for vfork() */
int __user *set_child_tid; /* CLONE_CHILD_SETTID */
int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */
//描述CPU时间的内容
//utime是用户态下的执行时间
//stime是内核态下的执行时间
cputime_t utime, stime, utimescaled, stimescaled;
cputime_t gtime;
cputime_t prev_utime, prev_stime;
//上下文切换计数
unsigned long nvcsw, nivcsw; /* context switch counts */
struct timespec start_time; /* monotonic time */
struct timespec real_start_time; /* boot based time */
/* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
//缺页统计
unsigned long min_flt, maj_flt;
struct task_cputime cputime_expires;
struct list_head cpu_timers[3];
/* process credentials */
//进程身份凭据
const struct cred *real_cred; /* objective and real subjective task
* credentials (COW) */
const struct cred *cred; /* effective (overridable) subjective task
* credentials (COW) */
struct mutex cred_guard_mutex; /* guard against foreign influences on
* credential calculations
* (notably. ptrace) */
struct cred *replacement_session_keyring; /* for KEYCTL_SESSION_TO_PARENT */
//去除路径以后的可执行文件名称,进程名
char comm[TASK_COMM_LEN]; /* executable name excluding path
- access with [gs]et_task_comm (which lock
it with task_lock())
- initialized normally by setup_new_exec */
/* file system info */
//文件系统信息
int link_count, total_link_count;
#ifdef CONFIG_SYSVIPC
/* ipc stuff */
//进程通信
struct sysv_sem sysvsem;
#endif
#ifdef CONFIG_DETECT_HUNG_TASK
/* hung task detection */
unsigned long last_switch_count;
#endif
//该进程在特点CPU下的状态
/* CPU-specific state of this task */
struct thread_struct thread;
//文件系统信息结构体
/* filesystem information */
struct fs_struct *fs;
//打开文件相关信息结构体
/* open file information */
struct files_struct *files;
/* namespaces */
//命名空间:
struct nsproxy *nsproxy;
/* signal handlers */
//关于进行信号处理
struct signal_struct *signal;
struct sighand_struct *sighand;
sigset_t blocked, real_blocked;
sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */
struct sigpending pending;
unsigned long sas_ss_sp;
size_t sas_ss_size;
int (*notifier)(void *priv);
void *notifier_data;
sigset_t *notifier_mask;
//进程审计
struct audit_context *audit_context;
#ifdef CONFIG_AUDITSYSCALL
uid_t loginuid;
unsigned int sessionid;
#endif
seccomp_t seccomp;
#ifdef CONFIG_UTRACE
struct utrace *utrace;
unsigned long utrace_flags;
#endif
//线程跟踪组
/* Thread group tracking */
u32 parent_exec_id;
u32 self_exec_id;
/* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed,
* mempolicy */
spinlock_t alloc_lock;
//中断
#ifdef CONFIG_GENERIC_HARDIRQS
/* IRQ handler threads */
struct irqaction *irqaction;
#endif
//task_rq_lock函数所使用的锁
/* Protection of the PI data structures: */
spinlock_t pi_lock;
//基于PI协议的等待互斥锁
#ifdef CONFIG_RT_MUTEXES
/* PI waiters blocked on a rt_mutex held by this task */
struct plist_head pi_waiters;
/* Deadlock detection and priority inheritance handling */
struct rt_mutex_waiter *pi_blocked_on;
#endif
//死锁检测
#ifdef CONFIG_DEBUG_MUTEXES
/* mutex deadlock detection */
struct mutex_waiter *blocked_on;
#endif
//中断
#ifdef CONFIG_TRACE_IRQFLAGS
unsigned int irq_events;
int hardirqs_enabled;
unsigned long hardirq_enable_ip;
unsigned int hardirq_enable_event;
unsigned long hardirq_disable_ip;
unsigned int hardirq_disable_event;
int softirqs_enabled;
unsigned long softirq_disable_ip;
unsigned int softirq_disable_event;
unsigned long softirq_enable_ip;
unsigned int softirq_enable_event;
int hardirq_context;
int softirq_context;
#endif
//lockdep
#ifdef CONFIG_LOCKDEP
# define MAX_LOCK_DEPTH 48UL
u64 curr_chain_key;
int lockdep_depth;
unsigned int lockdep_recursion;
struct held_lock held_locks[MAX_LOCK_DEPTH];
gfp_t lockdep_reclaim_gfp;
#endif
//日志文件
/* journalling filesystem info */
void *journal_info;
/* stacked block device info */
//块设备链表
struct bio *bio_list, **bio_tail;
/* VM state */
//虚拟内存状态,内存回收
struct reclaim_state *reclaim_state;
//存放块设备I/O流量信息
struct backing_dev_info *backing_dev_info;
//I/O调度器所用信息
struct io_context *io_context;
unsigned long ptrace_message;
siginfo_t *last_siginfo; /* For ptrace use. */
//记录进程I/O计数
struct task_io_accounting ioac;
#if defined(CONFIG_TASK_XACCT)
u64 acct_rss_mem1; /* accumulated rss usage */
u64 acct_vm_mem1; /* accumulated virtual memory usage */
cputime_t acct_timexpd; /* stime + utime since last update */
#endif
//CPUSET功能
#ifdef CONFIG_CPUSETS
nodemask_t mems_allowed; /* Protected by alloc_lock */
#ifndef __GENKSYMS__
/*
* This does not change the size of the struct_task(2+2+4=4+4)
* so the offsets of the remaining fields are unchanged and
* therefore the kABI is preserved. Only the kernel uses
* cpuset_mem_spread_rotor and cpuset_slab_spread_rotor so
* it is safe to change it to use shorts instead of ints.
*/
unsigned short cpuset_mem_spread_rotor;
unsigned short cpuset_slab_spread_rotor;
int mems_allowed_change_disable;
#else
int cpuset_mem_spread_rotor;
int cpuset_slab_spread_rotor;
#endif
#endif
//Control Groups
#ifdef CONFIG_CGROUPS
/* Control Group info protected by css_set_lock */
struct css_set *cgroups;
/* cg_list protected by css_set_lock and tsk->alloc_lock */
struct list_head cg_list;
#endif
//futex同步机制
#ifdef CONFIG_FUTEX
struct robust_list_head __user *robust_list;
#ifdef CONFIG_COMPAT
struct compat_robust_list_head __user *compat_robust_list;
#endif
struct list_head pi_state_list;
struct futex_pi_state *pi_state_cache;
#endif
//关于内存检测工具Performance Event
#ifdef CONFIG_PERF_EVENTS
#ifndef __GENKSYMS__
void * __reserved_perf__;
#else
struct perf_event_context *perf_event_ctxp;
#endif
struct mutex perf_event_mutex;
struct list_head perf_event_list;
#endif
//非一致内存访问
#ifdef CONFIG_NUMA
struct mempolicy *mempolicy; /* Protected by alloc_lock */
short il_next;
#endif
//文件系统互斥资源
atomic_t fs_excl; /* holding fs exclusive resources */
//RCU链表
struct rcu_head rcu;
/*
* cache last used pipe for splice
*/
//管道
struct pipe_inode_info *splice_pipe;
//延迟计数
#ifdef CONFIG_TASK_DELAY_ACCT
struct task_delay_info *delays;
#endif
#ifdef CONFIG_FAULT_INJECTION
int make_it_fail;
#endif
struct prop_local_single dirties;
#ifdef CONFIG_LATENCYTOP
int latency_record_count;
struct latency_record latency_record[LT_SAVECOUNT];
#endif
/*
* time slack values; these are used to round up poll() and
* select() etc timeout values. These are in nanoseconds.
*/
//time slack values,常用于poll和select函数
unsigned long timer_slack_ns;
unsigned long default_timer_slack_ns;
//socket控制消息
struct list_head *scm_work_list;
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
//ftrace跟踪器
/* Index of current stored adress in ret_stack */
int curr_ret_stack;
/* Stack of return addresses for return function tracing */
struct ftrace_ret_stack *ret_stack;
/* time stamp for last schedule */
unsigned long long ftrace_timestamp;
/*
* Number of functions that haven't been traced
* because of depth overrun.
*/
atomic_t trace_overrun;
/* Pause for the tracing */
atomic_t tracing_graph_pause;
#endif
#ifdef CONFIG_TRACING
/* state flags for use by tracers */
unsigned long trace;
/* bitmask of trace recursion */
unsigned long trace_recursion;
#endif /* CONFIG_TRACING */
/* reserved for Red Hat */
unsigned long rh_reserved[2];
#ifndef __GENKSYMS__
struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
#ifdef CONFIG_CGROUP_MEM_RES_CTLR /* memcg uses this to do batch job */
struct memcg_batch_info {
int do_batch; /* incremented when batch uncharge started */
struct mem_cgroup *memcg; /* target memcg of uncharge */
unsigned long bytes; /* uncharged usage */
unsigned long memsw_bytes; /* uncharged mem+swap usage */
} memcg_batch;
#endif
#endif
};
参考:
http://blog.csdn.net/qq_26768741/article/details/54348586
http://blog.csdn.net/peiyao456/article/details/54407343?ref=myread