关于meanshift算法以及camshift算法的理解可参考:https://my.oschina.net/u/3702502/blog/1815341,内容讲的比较全面。
meanshift均值漂移算法:
代码1:(读取同样大小的窗口图片文件)
import numpy as np
import cv2
cap = cv2.VideoCapture(0)
while True:
ret ,frame = cap.read()
cv2.imshow('img',frame)
if cv2.waitKey(1) & 0xFF == 27 :
break
cap.release()
cv2.destroyAllWindows()
代码2:(设置画笔笔盖的阈值范围)
import cv2
import numpy as np
image = cv2.imread('bigai.png')
cv2.imshow("BGR", image)
hsv_low = np.array([0, 0, 0])
hsv_high = np.array([0, 0, 0])
def h_low(value):
hsv_low[0] = value
def h_high(value):
hsv_high[0] = value
def s_low(value):
hsv_low[1] = value
def s_high(value):
hsv_high[1] = value
def v_low(value):
hsv_low[2] = value
def v_high(value):
hsv_high[2] = value
cv2.namedWindow('image')
cv2.createTrackbar('H low', 'image', 0, 255, h_low)
cv2.createTrackbar('H high', 'image', 0, 255, h_high)
cv2.createTrackbar('S low', 'image', 0, 255, s_low)
cv2.createTrackbar('S high', 'image', 0, 255, s_high)
cv2.createTrackbar('V low', 'image', 0, 255, v_low)
cv2.createTrackbar('V high', 'image', 0, 255, v_high)
while True:
dst = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)
dst = cv2.inRange(dst, hsv_low, hsv_high)
cv2.imshow('dst', dst)
if cv2.waitKey(1) & 0xFF == 27:
break
cv2.destroyAllWindows()
(关于BGR与HSV色彩空间转换,可参考https://blog.csdn.net/u010429424/article/details/76577399),代码转载自:https://blog.csdn.net/u010429424/article/details/76577399;
代码3:
import numpy as np
import cv2
cap = cv2.VideoCapture(0)
# 获取视频第一帧
ret,frame = cap.read()
# 标记感兴趣区域
r,h,c,w = 10, 200, 10, 200
# wrap in a tuple
track_window = (c,r,w,h)
# extract the ROI for tracking
roi = frame[r:r+h, c:c+w]
# switch to HSV
hsv_roi = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
# 创建掩膜,设置色彩最高阈值与最低阈值,获取笔盖的掩码
mask = cv2.inRange(hsv_roi, np.array((0, 81,167)), np.array((11,255,255)))
cv2.imshow("mask",mask)
# calculate histograms of roi
roi_hist = cv2.calcHist([hsv_roi],[0],mask,[256],[0,256])
cv2.imshow("hist",roi_hist)
cv2.normalize(roi_hist,roi_hist,0,255,cv2.NORM_MINMAX) #作归一化处理
# 设置终止条件,要么10次迭代,要么按至少1 pt移动
term_crit = ( cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 10, 1 )
#获取视频后续帧
while(1):
ret ,frame = cap.read()
if ret == True:
hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
dst = cv2.calcBackProject([hsv],[0],roi_hist,[0,180],1) #计算反向投影图像
print (dst)
# 应用meanshift算法获取密度集最大的位置,参数:1、反向投影图像;2、起始迭代的方框;3、迭代条件;返回值:ret(ture or false);track_window:最终位置的方框
ret, track_window = cv2.meanShift(dst, track_window, term_crit)
print(ret)
# Draw it on image
x,y,w,h = track_window
img2 = cv2.rectangle(frame, (x,y), (x+w,y+h), 255,2)
cv2.imshow('img2',img2)
k = cv2.waitKey(60) & 0xff
if k == 27:
break
else:
break
cv2.destroyAllWindows()
cap.release()
实现目标的追踪:
Camshift连续自适应均值漂移算法:
代码:
#coding=utf-8
import numpy as np
import cv2
cap = cv2.VideoCapture(0)
# take first frame of the video
ret,frame = cap.read()
# setup initial location of window
r,h,c,w = 300,200,400,300 # simply hardcoded the values
track_window = (c,r,w,h)
roi = frame[r:r+h, c:c+w]
hsv_roi = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
mask = cv2.inRange(hsv_roi, np.array((0, 81,167)), np.array((11,255,255)))
roi_hist = cv2.calcHist([hsv_roi],[0],mask,[180],[0,180])
cv2.normalize(roi_hist,roi_hist,0,255,cv2.NORM_MINMAX)
term_crit = ( cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 10, 1 )
while(1):
ret ,frame = cap.read()
if ret == True:
hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
dst = cv2.calcBackProject([hsv],[0],roi_hist,[0,180],1)
#返回一个旋转的矩形(即我们的结果)和框参数
ret, track_window = cv2.CamShift(dst, track_window, term_crit)
#print(ret)
#得到旋转矩形的四个点的坐标
pts = cv2.boxPoints(ret)
#print(pts)
#将四个顶点的坐标取整型
pts = np.int0(pts)
#print(pts)
img2 = cv2.polylines(frame,[pts],True, 255,2)#多线段矩形
cv2.imshow('img2',img2)
k = cv2.waitKey(60) & 0xff
if k == 27:
break
else:
break
cv2.destroyAllWindows()
cap.release()
实现的结果: