- 深入理解 MultiQueryRetriever:提升向量数据库检索效果的强大工具
nseejrukjhad
数据库python
深入理解MultiQueryRetriever:提升向量数据库检索效果的强大工具引言在人工智能和自然语言处理领域,高效准确的信息检索一直是一个关键挑战。传统的基于距离的向量数据库检索方法虽然广泛应用,但仍存在一些局限性。本文将介绍一种创新的解决方案:MultiQueryRetriever,它通过自动生成多个查询视角来增强检索效果,提高结果的相关性和多样性。MultiQueryRetriever的工
- FlagEmbedding
吉小雨
python库python
FlagEmbedding教程FlagEmbedding是一个用于生成文本嵌入(textembeddings)的库,适合处理自然语言处理(NLP)中的各种任务。嵌入(embeddings)是将文本表示为连续向量,能够捕捉语义上的相似性,常用于文本分类、聚类、信息检索等场景。官方文档链接:FlagEmbedding官方GitHub一、FlagEmbedding库概述1.1什么是FlagEmbeddi
- 基于深度学习的多模态信息检索
SEU-WYL
深度学习dnn深度学习人工智能
基于深度学习的多模态信息检索(MultimodalInformationRetrieval,MMIR)是指利用深度学习技术,从包含多种模态(如文本、图像、视频、音频等)的数据集中检索出满足用户查询意图的相关信息。这种方法不仅可以处理单一模态的数据,还可以在多种模态之间建立关联,从而更准确地满足用户需求。1.多模态信息检索的挑战异构数据表示:多模态数据通常具有不同的特征和表示形式(如文本的词嵌入与图
- 计算机网络笔记分享(第六章 应用层)
寒页_
计算机网络计算机网络笔记
文章目录六、应用层6.1域名系统DNS解析的两种查询方式6.2文件传送协议FTP简单传输协议TFTP6.3远程终端协议TELNET6.4万维网WWW统一资源定位符URL超文本传输协议HTTP万维网的文档HTML万维网的信息检索系统博客和微博社交网站6.5电子邮件6.6动态主机配置协议DHCP6.7简单网络管理协议SNMP6.8应用进程跨越网络的通信几种常用的系统调用6.9P2P应用介绍学习计算机网
- 德克萨斯大学奥斯汀分校自然语言处理硕士课程汉化版(第十一周) - 自然语言处理扩展研究
Encarta1993
自然语言处理自然语言处理人工智能
自然语言处理扩展研究1.多语言研究2.语言锚定3.伦理问题1.多语言研究多语言(Multilinguality)是NLP的一个重要研究方向,旨在开发能够处理多种语言的模型和算法。由于不同语言在语法、词汇和语义结构上存在差异,这成为一个复杂且具有挑战性的研究领域。多语言性的研究促进了机器翻译、跨语言信息检索和多语言对话系统等应用的发展。以下是多语言的几个主要研究方向和重要技术:多语言模型的构建,开发
- 【机器学习】朴素贝叶斯方法的概率图表示以及贝叶斯统计中的共轭先验方法
Lossya
机器学习概率论人工智能朴素贝叶斯共轭先验
引言朴素贝叶斯方法是一种基于贝叶斯定理的简单概率模型,它假设特征之间相互独立。文章目录引言一、朴素贝叶斯方法的概率图表示1.1节点表示1.2边表示1.3无其他连接1.4总结二、朴素贝叶斯的应用场景2.1文本分类2.2推荐系统2.3医疗诊断2.4欺诈检测2.5情感分析2.6邮件过滤2.7信息检索2.8生物信息学三、朴素贝叶斯的优点四、朴素贝叶斯的局限性4.1特征独立性假设4.2敏感于输入数据的表示4
- 爬取微博热搜榜
带刺的厚崽
python数据挖掘开发语言
201911081102汤昕宇现代信息检索导论实验一程序运行的截图:[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-GimpWjCB-1639531088565)(程序运行截图.png)]当时微博热搜的截图[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-lDXRgrxa-1639531088568)(微博热搜截图.png)]对应的CSV截
- 使用DuckDuckGo搜索API进行智能信息检索:实用指南与最佳实践
qq_37836323
java前端服务器python
使用DuckDuckGo搜索API进行智能信息检索:实用指南与最佳实践1.引言在当今信息爆炸的时代,快速准确地获取所需信息变得越来越重要。DuckDuckGo作为一个注重隐私的搜索引擎,不仅为普通用户提供了优质的搜索服务,还为开发者提供了强大的搜索API。本文将深入探讨如何利用DuckDuckGo搜索API进行智能信息检索,并提供实用的代码示例和最佳实践。2.DuckDuckGo搜索API概述Du
- GitHub每周最火火火项目(8.26-9.1)
FutureUniant
Github周推github音视频人工智能计算机视觉ai
项目名称:Cinnamon/kotaemon项目介绍:kotaemon是一个基于开源RAG(检索增强生成)的工具,旨在实现与文档的聊天交互。它为用户提供了一种便捷的方式来与自己的文档进行对话,通过检索文档中的信息来回答用户的问题。这使得用户能够更高效地获取文档中的知识,提高信息检索和利用的效率。项目地址:https://github.com/Cinnamon/kotaemon项目名称:frappe
- 国开(电大)2024秋《文献检索与论文写作》综合练习2
电大题园(1)
学习方法经验分享笔记
国开(电大)2024秋《文献检索与论文写作》综合练习2一、单选题(14题)1.什么数据库为用户提供深入到图书章节和内容的全文检索(C)A、知网B、万方C、读秀知识库D、维普解析:“读秀”是由海量全文数据及资料基本信息组成的超大型数据库,为用户提供深入到图书章节和内容的全文检索。2.信息检索根据检索对象不同,一般分为:(D)A、二次检索、高级检索B、分类检索、主题检索C、计算机检索、手工检索D、数据
- 偏见的亮点:认知偏见如何增强推荐系统
量子位AI
人工智能机器学习
认知偏见,曾被视为人类决策过程中的缺陷,现在被认为对学习和决策有潜在的积极影响。然而,在机器学习中,尤其是在搜索和排序系统中,认知偏见的研究仍需改进。尽管有大量研究集中在探讨这些偏见如何影响模型训练和机器行为的道德性,但信息检索领域大多关注于检测偏见及其对搜索行为的影响。这在利用这些认知偏见来增强检索算法方面带来了挑战,这一领域尚未广泛探讨,对研究者而言提供了机遇和挑战。现有的一些方法,如推荐系统
- 每天一个数据分析题(五百二十一)- 词袋模型
跟着紫枫学姐学CDA
数据分析题库数据分析
词袋模型(英语:Bag-of-wordsmodel)是个在自然语言处理和信息检索(IR)下被简化的表达模型。以下关于词袋模型(BagofWord,BoW)的说法正确的是?A.将所有词语装进一个袋子里,不考虑其词法和语序的问题,即每个词语都是独立的B.词袋模型只能应用在文件分类C.CBOW是词袋模型的一种D.GloVe模型是词袋模型的一种数据分析认证考试介绍:点击进入数据分析考试大纲下载题目来源于C
- 平均精度(Average Precision,AP)以及AP50、AP75、APs、APm、APl、Box AP、Mask AP等不同阈值和细分类别的评估指标说明
fydw_715
深度学习基础分类数据挖掘人工智能
平均精度(AveragePrecision,AP)是信息检索领域和机器学习评价指标中常用的一个衡量方法,特别广泛用于目标检测任务。它在评估模型的表现时结合了准确率(Precision)和召回率(Recall),为我们提供一个综合性的评估指标。关键概念Precision(准确率):精确率表示在模型预测为正例的所有样本中,实际上为正例的比例。它的计算公式为:Precision=TruePositive
- python机器学习算法--贝叶斯算法
在下小天n
机器学习python机器学习算法
1.贝叶斯定理在20世纪60年代初就引入到文字信息检索中,仍然是文字分类的一种热门(基准)方法。文字分类是以词频为特征判断文件所属类型或其他(如垃圾邮件、合法性、新闻分类等)的问题。原理牵涉到概率论的问题,不在详细说明。sklearn.naive_bayes.GaussianNB(priors=None,var_smoothing=1e-09)#Bayes函数·priors:矩阵,shape=[n
- WeKnow-RAG:智能自适应的检索增强生成方法
步子哥
人工智能
在当今快速发展的人工智能领域,检索增强生成(Retrieval-AugmentedGeneration,RAG)方法逐渐成为一种新兴的解决方案。CobusGreyling在他最新的文章中深入探讨了WeKnow-RAG,这一方法通过结合知识图谱和网络搜索技术,极大地提升了大型语言模型(LLMs)在复杂查询中的表现。知识图谱的力量知识图谱(KnowledgeGraphs,KGs)作为信息检索的重要工具
- ChatGPT 3.5/4.0简单使用手册
老童聊AI
明哥陪你学Pythonchatgpt
ChatGPT3.5/4.0是一种先进的人工智能聊天机器人,能够理解和生成自然语言文本,为用户提供信息检索、问题解答、语言翻译等服务。系统要求操作系统:无特定要求,支持主流操作系统。网络连接:需要稳定的网络连接来使用在线服务。安装与注册访问ChatGPT官方网站或下载相应的应用程序。创建账户:根据网站或应用程序的指示完成注册流程。登录:使用注册的账户信息登录。备注:因为国内环境原因,所以我们不得以
- 缓存与数据库的数据一致性解决方案分析
Do&Feel
Java缓存数据库java
在现代应用中,缓存技术的使用广泛且至关重要,主要是为了提高数据访问速度和优化系统整体性能。缓存通过在内存或更快速的存储系统中存储经常访问的数据副本,使得数据检索变得迅速,从而避免了每次请求都需要从较慢的主存储(如硬盘或远程数据库)中读取数据的延迟。这种技术特别适用于读取操作远多于写入操作的场景,如网页浏览、内容分发网络(CDN)和大规模的信息检索系统等。缓存的实现方式多样,包括但不限于内存缓存、分
- 国产智能搜索MindSearch∶ 能够在不到3分钟内收集并整合300多页相关信息?
百态老人
人工智能笔记
MindSearch是一款由上海人工智能实验室推出的国产智能搜索工具,具有强大的自然语言处理和机器学习能力,旨在提供高效、精准的信息检索服务。它能够通过自然语言查询快速在各种文件格式(如PDF、DOCX、TXT)中找到所需信息,并利用人工智能技术提供即时答案和相关搜索结果。MindSearch不仅是一个独立的搜索引擎平台,还提供了一个开源的AI搜索引擎框架,用户可以使用闭源或开源的大语言模型(LL
- 赠书 | 李航老师的蓝皮书
茗创科技
赠书活动统计学习方法“统计机器学习方法是实现智能化目标的最有效的手段,统计机器学习是各种智能性处理研究领域中的核心技术,并且在这些领域的发展及应用中起着决定性的作用。”作者简介李航,日本京都大学电气电子工程系毕业,日本东京大学计算机科学博士。北京大学、南京大学客座教授,IEEE会士,ACM杰出科学家,CCF高级会员。研究方向包括信息检索,自然语言处理,统计机器学习,及数据挖掘。曾出版过三部学术专著
- 什么是分布式搜索引擎
罗彬桦
分布式搜索引擎搜索引擎分布式
什么是分布式搜索引擎搜索引擎所谓搜索引擎,就是根据用户需求与一定算法,运用特定策略从互联网检索出制定信息反馈给用户的一门检索技术。搜索引擎依托于多种技术,如网络爬虫技术、检索排序技术、网页处理技术、大数据处理技术、自然语言处理技术等,为信息检索用户提供快速、高相关性的信息服务。搜索引擎技术的核心模块一般包括爬虫、索引、检索和排序等,同时可添加其他一系列辅助模块,以为用户创造更好的网络使用环境。分布
- 自然语言处理(NLP)技术的概念及优势
刘小董
学习心得自然语言处理
自然语言处理(NLP)是人工智能领域的一个重要分支,其目标是使计算机能够理解、处理和生成人类自然语言的形式和含义。NLP技术的优势包括:实现人机交互:NLP技术可以使计算机与人类之间实现自然的语言交互,使人们可以通过语音识别、语义理解等方式与计算机进行交流。大规模文本处理:NLP技术可以对大规模文本进行自动化处理和分析,提取关键信息和知识,从而实现文本分类、情感分析、信息检索等任务。自动化翻译:N
- 《倒排索引》
刚满十八工地搬砖
数据结构
1、了解倒排索引的基本概念1.1、倒排索引是什么倒排索引是一种用于全文搜索的数据结构,它将文档中的每个单词映射到包含该单词的所有文档的列表中,然后用该列表替换单词。因此,倒排索引在文本搜索和信息检索中广泛应用,如搜索引擎、网站搜索、文本分类等场景中。具体来说,一个倒排索引包含一个词语词典和每个词语对应的倒排列表。倒排列表中记录了包含该词语的所有文档的编号、词频等信息。这让我们能够在O(1)的时间内
- 如何选择知识图谱的智能问答方法
Komorebi_9999
知识图谱人工智能
在选择基于知识图谱的智能问答方法时,可以考虑以下几个因素来判断哪种方法最适合您的需求:问题的结构化程度:如果您的问题主要是结构化的,即遵循一定的格式和模板,那么基于模板的方法可能是一个不错的选择。相反,如果问题形式多样,结构不固定,那么基于语义解析或深度学习的方法可能更合适。问题的复杂性:对于简单明了的问题,基于模板或信息检索的方法可能更加高效。然而,对于复杂、模糊或需要深入理解的问题,基于语义解
- AIGC 知识:什么是 RAG? 如何使用 RAG 技术帮助我们制作自己的客户服务功能
surfirst
架构AIGC
RAG解释及其示例什么是RAG?检索增强生成(RetrievalAugmentedGeneration,RAG)是一种人工智能技术,将信息检索与文本生成相结合。以下是它的运作方式:检索:1.您提出一个问题或请求信息摘要。2.RAG在庞大的文本数据集中(文档、文章等)搜索相关信息。增强:3.RAG找到相关信息后,不会简单地将其原封不动地呈现出来。相反,它会分析内容,提取关键点,并将其与您的特定问题或
- Elasticsearch:特定领域的生成式 AI - 预训练、微调和 RAG
Elastic 中国社区官方博客
AIElasticsearchElastic人工智能elasticsearch大数据搜索引擎全文检索
作者:来自ElasticSteveDodson有多种策略可以将特定领域的知识添加到大型语言模型(LLM)中,并且作为积极研究领域的一部分,正在研究更多方法。对特定领域数据集进行预训练和微调等方法使LLMs能够推理并生成特定领域语言。然而,使用这些LLM作为知识库仍然容易产生幻觉。如果领域语言与LLM训练数据相似,则通过检索增强生成(RAG)使用外部信息检索系统向LLM提供上下文信息可以改善事实响应
- 【软考高级信息系统项目管理师--第五章:信息系统工程下】
码上有前
软考高项职场和发展程序人生学习方法软件工程
作者:“码上有前”文章简介:软考高级–信息系统项目管理师欢迎小伙伴们点赞、收藏⭐、留言第五章:信息系统工程下数据工程十八、数据模型分类十九、数据建模过程二十、数据元数据标准化管理数掘备份数据容灾数据清理步骤数据开发利用二十四,信息检索系统集成系统安全数据工程十八、数据模型分类1、概念模型:基本元素包含实体、属性、、键、关联;2、辑模型:主要数据结构有层次结构、网状结构、关系型、面向对象模型。3、物
- word embedding是什么,word embedding之前需要做什么?
liaolaa
深度学习自然语言处理pytorch语言模型
我们知道自然语言处理是让机器能够看懂并理解人类所说的语言,能够像人类一样进行交互,和人对话。从自然语言的角度看,NLP可以大致分为自然语言处理和自然语言生成这两部分,就是理解文本和文本生成。具体应用领域几乎覆盖日常生活,如提取文章摘要,文本情感分析,淘宝京东上机器人客服的智能问答,实体命名识别,知识图谱,信息检索等等。又比如说现在已经有方言的语音转文字技术。那具体实现起来该怎么样呢?我们总不能直接
- python实现搜索引擎,数据检索项目:职业查询系统(基本的搜索引擎+爬虫拉勾网职业数据库),搜索引擎可以学习用户的标记,职业网站爬虫生成数据集
violet_ever_garden
python搜索引擎爬虫算法
简介信息检索小组项目,队友已同意上传用spider爬拉钩网站排序文档基于tfidf和cosine相似性从搜索历史和用户标记的相关和不相关的结果中学习IDE规则方法,优化结果基于Tkinter的UI标准登录模块主搜索窗口与页面切换这里我只放出我贡献相关的部分,原文为英文,懒得翻译就机翻一下,文末给出文件链接正文数据处理搜索引擎我们遵循基本的管道,并实现了排名搜索引擎与一些经典的算法,我们已经研究过。
- 工信部颁发的《自然语言与语音处理设计开发工程师》中级证书的培训通知
人工智能技术与咨询
人工智能计算机视觉自然语言处理
国家发展大势所趋,促进各行各业智能化、数字化转型,而计算机自然语言处理是一个快速发展的领域,随着人工智能技术的不断发展和应用,对自然语言处理的需求也越来越大。因此,计算机自然语言处理的就业前景非常好。在就业方面,计算机自然语言处理领域主要涉及人工智能、自然语言处理、机器学习、语音识别、信息检索等方面的工作,包括算法工程师、数据分析师、自然语言处理工程师、语音处理工程师、信息检索工程师等职位。在科技
- 【Meta分析】临床试验信息检索与数据获取
医科堂
系统评价/Meta分析指全面收集所有相关研究并逐个进行严格评价和分析,再用定性或定量合成的方法对资料进行处理得出综合结论的研究方法。在指导学员的过程中发现初学者在学习过程中常常会碰到许多共性问题,本公众号特此开设专栏解答,希望能够和大家共同学习交流Meta分析,共同成长,如有不当之处,还请大家批评指正。本期我们分享的是如何检索和筛选临床试验注册数据。01序言昨日,一位学员提问在筛选clinical
- 解线性方程组
qiuwanchi
package gaodai.matrix;
import java.util.ArrayList;
import java.util.List;
import java.util.Scanner;
public class Test {
public static void main(String[] args) {
Scanner scanner = new Sc
- 在mysql内部存储代码
annan211
性能mysql存储过程触发器
在mysql内部存储代码
在mysql内部存储代码,既有优点也有缺点,而且有人倡导有人反对。
先看优点:
1 她在服务器内部执行,离数据最近,另外在服务器上执行还可以节省带宽和网络延迟。
2 这是一种代码重用。可以方便的统一业务规则,保证某些行为的一致性,所以也可以提供一定的安全性。
3 可以简化代码的维护和版本更新。
4 可以帮助提升安全,比如提供更细
- Android使用Asynchronous Http Client完成登录保存cookie的问题
hotsunshine
android
Asynchronous Http Client是android中非常好的异步请求工具
除了异步之外还有很多封装比如json的处理,cookie的处理
引用
Persistent Cookie Storage with PersistentCookieStore
This library also includes a PersistentCookieStore whi
- java面试题
Array_06
java面试
java面试题
第一,谈谈final, finally, finalize的区别。
final-修饰符(关键字)如果一个类被声明为final,意味着它不能再派生出新的子类,不能作为父类被继承。因此一个类不能既被声明为 abstract的,又被声明为final的。将变量或方法声明为final,可以保证它们在使用中不被改变。被声明为final的变量必须在声明时给定初值,而在以后的引用中只能
- 网站加速
oloz
网站加速
前序:本人菜鸟,此文研究总结来源于互联网上的资料,大牛请勿喷!本人虚心学习,多指教.
1、减小网页体积的大小,尽量采用div+css模式,尽量避免复杂的页面结构,能简约就简约。
2、采用Gzip对网页进行压缩;
GZIP最早由Jean-loup Gailly和Mark Adler创建,用于UNⅨ系统的文件压缩。我们在Linux中经常会用到后缀为.gz
- 正确书写单例模式
随意而生
java 设计模式 单例
单例模式算是设计模式中最容易理解,也是最容易手写代码的模式了吧。但是其中的坑却不少,所以也常作为面试题来考。本文主要对几种单例写法的整理,并分析其优缺点。很多都是一些老生常谈的问题,但如果你不知道如何创建一个线程安全的单例,不知道什么是双检锁,那这篇文章可能会帮助到你。
懒汉式,线程不安全
当被问到要实现一个单例模式时,很多人的第一反应是写出如下的代码,包括教科书上也是这样
- 单例模式
香水浓
java
懒汉 调用getInstance方法时实例化
public class Singleton {
private static Singleton instance;
private Singleton() {}
public static synchronized Singleton getInstance() {
if(null == ins
- 安装Apache问题:系统找不到指定的文件 No installed service named "Apache2"
AdyZhang
apachehttp server
安装Apache问题:系统找不到指定的文件 No installed service named "Apache2"
每次到这一步都很小心防它的端口冲突问题,结果,特意留出来的80端口就是不能用,烦。
解决方法确保几处:
1、停止IIS启动
2、把端口80改成其它 (譬如90,800,,,什么数字都好)
3、防火墙(关掉试试)
在运行处输入 cmd 回车,转到apa
- 如何在android 文件选择器中选择多个图片或者视频?
aijuans
android
我的android app有这样的需求,在进行照片和视频上传的时候,需要一次性的从照片/视频库选择多条进行上传
但是android原生态的sdk中,只能一个一个的进行选择和上传。
我想知道是否有其他的android上传库可以解决这个问题,提供一个多选的功能,可以使checkbox之类的,一次选择多个 处理方法
官方的图片选择器(但是不支持所有版本的androi,只支持API Level
- mysql中查询生日提醒的日期相关的sql
baalwolf
mysql
SELECT sysid,user_name,birthday,listid,userhead_50,CONCAT(YEAR(CURDATE()),DATE_FORMAT(birthday,'-%m-%d')),CURDATE(), dayofyear( CONCAT(YEAR(CURDATE()),DATE_FORMAT(birthday,'-%m-%d')))-dayofyear(
- MongoDB索引文件破坏后导致查询错误的问题
BigBird2012
mongodb
问题描述:
MongoDB在非正常情况下关闭时,可能会导致索引文件破坏,造成数据在更新时没有反映到索引上。
解决方案:
使用脚本,重建MongoDB所有表的索引。
var names = db.getCollectionNames();
for( var i in names ){
var name = names[i];
print(name);
- Javascript Promise
bijian1013
JavaScriptPromise
Parse JavaScript SDK现在提供了支持大多数异步方法的兼容jquery的Promises模式,那么这意味着什么呢,读完下文你就了解了。
一.认识Promises
“Promises”代表着在javascript程序里下一个伟大的范式,但是理解他们为什么如此伟大不是件简
- [Zookeeper学习笔记九]Zookeeper源代码分析之Zookeeper构造过程
bit1129
zookeeper
Zookeeper重载了几个构造函数,其中构造者可以提供参数最多,可定制性最多的构造函数是
public ZooKeeper(String connectString, int sessionTimeout, Watcher watcher, long sessionId, byte[] sessionPasswd, boolea
- 【Java命令三】jstack
bit1129
jstack
jstack是用于获得当前运行的Java程序所有的线程的运行情况(thread dump),不同于jmap用于获得memory dump
[hadoop@hadoop sbin]$ jstack
Usage:
jstack [-l] <pid>
(to connect to running process)
jstack -F
- jboss 5.1启停脚本 动静分离部署
ronin47
以前启动jboss,往各种xml配置文件,现只要运行一句脚本即可。start nohup sh /**/run.sh -c servicename -b ip -g clustername -u broatcast jboss.messaging.ServerPeerID=int -Djboss.service.binding.set=p
- UI之如何打磨设计能力?
brotherlamp
UIui教程ui自学ui资料ui视频
在越来越拥挤的初创企业世界里,视觉设计的重要性往往可以与杀手级用户体验比肩。在许多情况下,尤其对于 Web 初创企业而言,这两者都是不可或缺的。前不久我们在《右脑革命:别学编程了,学艺术吧》中也曾发出过重视设计的呼吁。如何才能提高初创企业的设计能力呢?以下是 9 位创始人的体会。
1.找到自己的方式
如果你是设计师,要想提高技能可以去设计博客和展示好设计的网站如D-lists或
- 三色旗算法
bylijinnan
java算法
import java.util.Arrays;
/**
问题:
假设有一条绳子,上面有红、白、蓝三种颜色的旗子,起初绳子上的旗子颜色并没有顺序,
您希望将之分类,并排列为蓝、白、红的顺序,要如何移动次数才会最少,注意您只能在绳
子上进行这个动作,而且一次只能调换两个旗子。
网上的解法大多类似:
在一条绳子上移动,在程式中也就意味只能使用一个阵列,而不使用其它的阵列来
- 警告:No configuration found for the specified action: \'s
chiangfai
configuration
1.index.jsp页面form标签未指定namespace属性。
<!--index.jsp代码-->
<%@taglib prefix="s" uri="/struts-tags"%>
...
<s:form action="submit" method="post"&g
- redis -- hash_max_zipmap_entries设置过大有问题
chenchao051
redishash
使用redis时为了使用hash追求更高的内存使用率,我们一般都用hash结构,并且有时候会把hash_max_zipmap_entries这个值设置的很大,很多资料也推荐设置到1000,默认设置为了512,但是这里有个坑
#define ZIPMAP_BIGLEN 254
#define ZIPMAP_END 255
/* Return th
- select into outfile access deny问题
daizj
mysqltxt导出数据到文件
本文转自:http://hatemysql.com/2010/06/29/select-into-outfile-access-deny%E9%97%AE%E9%A2%98/
为应用建立了rnd的帐号,专门为他们查询线上数据库用的,当然,只有他们上了生产网络以后才能连上数据库,安全方面我们还是很注意的,呵呵。
授权的语句如下:
grant select on armory.* to rn
- phpexcel导出excel表简单入门示例
dcj3sjt126com
PHPExcelphpexcel
<?php
error_reporting(E_ALL);
ini_set('display_errors', TRUE);
ini_set('display_startup_errors', TRUE);
if (PHP_SAPI == 'cli')
die('This example should only be run from a Web Brows
- 美国电影超短200句
dcj3sjt126com
电影
1. I see. 我明白了。2. I quit! 我不干了!3. Let go! 放手!4. Me too. 我也是。5. My god! 天哪!6. No way! 不行!7. Come on. 来吧(赶快)8. Hold on. 等一等。9. I agree。 我同意。10. Not bad. 还不错。11. Not yet. 还没。12. See you. 再见。13. Shut up!
- Java访问远程服务
dyy_gusi
httpclientwebservicegetpost
随着webService的崛起,我们开始中会越来越多的使用到访问远程webService服务。当然对于不同的webService框架一般都有自己的client包供使用,但是如果使用webService框架自己的client包,那么必然需要在自己的代码中引入它的包,如果同时调运了多个不同框架的webService,那么就需要同时引入多个不同的clien
- Maven的settings.xml配置
geeksun
settings.xml
settings.xml是Maven的配置文件,下面解释一下其中的配置含义:
settings.xml存在于两个地方:
1.安装的地方:$M2_HOME/conf/settings.xml
2.用户的目录:${user.home}/.m2/settings.xml
前者又被叫做全局配置,后者被称为用户配置。如果两者都存在,它们的内容将被合并,并且用户范围的settings.xml优先。
- ubuntu的init与系统服务设置
hongtoushizi
ubuntu
转载自:
http://iysm.net/?p=178 init
Init是位于/sbin/init的一个程序,它是在linux下,在系统启动过程中,初始化所有的设备驱动程序和数据结构等之后,由内核启动的一个用户级程序,并由此init程序进而完成系统的启动过程。
ubuntu与传统的linux略有不同,使用upstart完成系统的启动,但表面上仍维持init程序的形式。
运行
- 跟我学Nginx+Lua开发目录贴
jinnianshilongnian
nginxlua
使用Nginx+Lua开发近一年的时间,学习和实践了一些Nginx+Lua开发的架构,为了让更多人使用Nginx+Lua架构开发,利用春节期间总结了一份基本的学习教程,希望对大家有用。也欢迎谈探讨学习一些经验。
目录
第一章 安装Nginx+Lua开发环境
第二章 Nginx+Lua开发入门
第三章 Redis/SSDB+Twemproxy安装与使用
第四章 L
- php位运算符注意事项
home198979
位运算PHP&
$a = $b = $c = 0;
$a & $b = 1;
$b | $c = 1
问a,b,c最终为多少?
当看到这题时,我犯了一个低级错误,误 以为位运算符会改变变量的值。所以得出结果是1 1 0
但是位运算符是不会改变变量的值的,例如:
$a=1;$b=2;
$a&$b;
这样a,b的值不会有任何改变
- Linux shell数组建立和使用技巧
pda158
linux
1.数组定义 [chengmo@centos5 ~]$ a=(1 2 3 4 5) [chengmo@centos5 ~]$ echo $a 1 一对括号表示是数组,数组元素用“空格”符号分割开。
2.数组读取与赋值 得到长度: [chengmo@centos5 ~]$ echo ${#a[@]} 5 用${#数组名[@或
- hotspot源码(JDK7)
ol_beta
javaHotSpotjvm
源码结构图,方便理解:
├─agent Serviceab
- Oracle基本事务和ForAll执行批量DML练习
vipbooks
oraclesql
基本事务的使用:
从账户一的余额中转100到账户二的余额中去,如果账户二不存在或账户一中的余额不足100则整笔交易回滚
select * from account;
-- 创建一张账户表
create table account(
-- 账户ID
id number(3) not null,
-- 账户名称
nam