- day 28打卡
weixin_39908253
AI学习笔记python
day18选用昨天的kmeans得到的效果进行聚类,进而推断每个簇的实际含义#先运行之前处理好的代码importpandasaspdimportnumpyasnpimportmatplotlib.pyplotaspltimportseabornassnsimportwarningswarnings.filterwarnings('ignore')plt.rcParams['font.sans-se
- 【NLP舆情分析】基于python微博舆情分析可视化系统(flask+pandas+echarts) 视频教程 - 基于wordcloud库实现词云图
大家好,我是java1234_小锋老师,最近写了一套【NLP舆情分析】基于python微博舆情分析可视化系统(flask+pandas+echarts)视频教程,持续更新中,计划月底更新完,感谢支持。今天讲解基于wordcloud库实现词云图视频在线地址:2026版【NLP舆情分析】基于python微博舆情分析可视化系统(flask+pandas+echarts+爬虫)视频教程(火爆连载更新中..
- 十种常用数据分析模型
耐思nice~
数据分析数据分析人工智能机器学习数学建模
1-线性回归(LinearRegression)场景:预测商品销售额优点:简单易用,结果易于解释缺点:假设线性关系,容易受到异常值影响概念:建立自变量和因变量之间线性关系的模型。公式:[y=b_0+b_1x_1+b_2x_2+...+b_nx_n]代码示例:importpandasaspdfromsklearn.linear_modelimportLinearRegressionfromsklea
- numpy教程
Jeffrey_Pacino
编程学习numpy数据分析
使用jupyternotebook分析数据之前导入的包importnumpyasnp#linearalgebraimportpandasaspd#dataprocessing,CSVfileI/O(e.g.pd.read_csv)%matplotlibinlineimportmatplotlib.pyplotasplt#Matlab-styleplottingimportseabornassns
- 【Pandas超实用经验汇总-数据建模分析】
Mr.小海
Python数据挖掘数据分析python
Pandas超实用经验汇总-数据分析前言基本方法1.读取文件2.查看数据3.修改、删除、替换数据等总结前言看见了很多教程虽然很全,但是很多技巧容易忘记且几乎用不上,读起来晦涩难懂,今天我给大家总结了Pandas的一些学习经验技巧,包含常见日常使用的pandas知识,以及一些技巧,这些技巧常见于数学建模,数据分析,数据挖掘比赛等。基本方法1.读取文件方法如下:importpandasaspd#正常写
- 数据分析综合应用 30分钟精通计划
z日火
校招学习日记数据分析数据挖掘
数据分析综合应用30分钟精通计划(完整版含输出)⏰时间分配5分钟:数据加载与清洗基础10分钟:探索性数据分析(EDA)10分钟:数据分析实战案例5分钟:分析报告生成第一部分:数据加载与清洗基础(5分钟)1.模拟真实数据集importpandasaspdimportnumpyasnpimportmatplotlib.pyplotaspltimportwarningswarnings
- [Python] -项目实战4- 利用Python进行Excel批量处理
踏雪无痕老爷子
Pythonpythonexcel开发语言
一、为什么要批量处理Excel文件?节省时间:人工对数十、数百个Excel文件重复操作不现实,Python批量处理一次搞定。保证一致性:统一格式、统一操作,避免手动误差。易于集成:可嵌入日常自动化流程,支持定时和触发执行。二、常用库及选型建议库作用优势局限pandas读取/清洗/分析Excel数据语法简
- Python高效编程技术大全:从解释器到异步编程
竹石文化传播有限公司
本文还有配套的精品资源,点击获取简介:《Python高性能编程技术》旨在指导开发者深入理解Python的性能优化方法。本书涵盖了从解释器机制、数据结构和内置函数的优化,到使用Numpy、Pandas、多线程和多进程进行数值计算和数据处理,再到并发编程和性能分析等全面技术,帮助开发者提升代码执行效率和处理各种性能挑战。1.Python解释器性能分析Python作为一门解释型语言,其性能受到解释器行为
- Python自动化神器:Faker库生成逼真测试数据的10种高级技巧
Python自动化神器:Faker库生成逼真测试数据的10种高级技巧fromfakerimportFakerimportpandasaspdimportjsonfromdatetimeimportdatetime#创建一个Faker实例fake=Faker('zh_CN')#使用中文本地化#生成基本个人信息defgenerate_user():return{"name":fake.name(),"
- Python在股票数据分析中的应用,如何通过代码实现精准预测股价走势?
股票程序化交易接口
量化交易股票API接口Python股票量化交易数据分析python股票数据分析股价走势预测代码实现股票量化接口股票API接口
Python股票接口实现查询账户,提交订单,自动交易(1)Python股票程序交易接口查账,提交订单,自动交易(2)股票量化,Python炒股,CSDN交流社区>>>数据获取与导入在股票数据分析中,首先要获取相关数据。Python有许多库可实现这一功能,比如pandas-datareader。使用它可以轻松从知名数据源如雅虎财经获取股票的历史价格、成交量等数据。只需简单几行代码,就能将特定股票在特
- 【day1】Python基础知识-pycharm版
m0_56051615
pycharmpythonide
内容:IDLE介绍使用、建立python源文件、python程序格式(缩进和注释)、海龟绘图、对象的组成、栈内存和堆内存、标识符、变量安装PyCharm和AnacondaAnaconda是可以便捷获取包且对包能够进行管理,同时对环境可以统一管理的发行版本。包含了conda、Python在内的超过180个科学包及其依赖项。其包含的科学包包括:numpy,pandas,ipythonnotebook等
- 套数据分析模板(含 Python 代码和示例数据)
女码农的重启
开发语言数据清洗pythonjava数据分析
一、销售数据分析模板(1-10套)模板1:月度销售趋势分析示例数据(sales_monthly.csv)月份,销售额,销量,客单价2023-01,120000,500,2402023-02,135000,550,245.452023-03,150000,600,250...Python代码importpandasaspdimportmatplotlib.pyplotasplt#设置中文显示plt.
- 超详细 Conda 指令详解---附有相应的示例
以下是所有conda指令的详细列表,并附有相应的示例超详细Conda指令详解环境管理命令condacreate:创建新环境condacreate--name[package_spec1package_spec2...]示例:condacreate--namemyenvnumpypandascondainstall:安装包到当前环境condainstall[--name][--file][--cha
- 告别内存焦虑!用Dask打开Python大数据并行计算的“任意门“
小张在编程
python大数据开发语言
引言当你在Jupyter里用Pandas读取20GB的CSV文件,看到内存占用率从10%飙升到90%,最后弹出"MemoryError"时;当你想对亿级数据做分组聚合,却发现单线程计算要等上半小时——这些场景是不是像极了用小推车搬运万吨货物?Python生态中,Dask库就像一台"并行计算推土机",能把大数据拆分成小块并行处理,让你的普通电脑也能拥有分布式计算的能力。本文将从原理到实战,带你掌握这
- 基于生成对抗网络增强主动学习的超高温陶瓷硬度优化
神经网络15044
深度学习算法仿真模型生成对抗网络学习人工智能
复现论文:基于生成对抗网络增强主动学习的超高温陶瓷硬度优化我将使用Python复现这篇关于使用生成对抗网络(GAN)增强主动学习来优化超高温陶瓷(UHTC)硬度的研究论文。以下是完整的实现代码和解释。1.环境准备和数据加载首先,我们需要准备必要的Python库并加载数据。importnumpyasnpimportpandasaspdimportmatplotlib.pyplotaspltimpor
- Conda 核心命令快速查阅表
拉拉拉拉拉拉拉马
conda
本表旨在提供一个简洁、高效的Conda命令参考,专注于最常用功能的快速查找。1.环境管理(EnvironmentManagement)功能(Function)命令(Command)示例(Example)创建新环境condacreate-n[packages...]condacreate-nmyenvpython=3.9pandas激活环境condaactivatecondaactivatemyen
- Python 数据分析与可视化:从基础到进阶的技术实现与优化策略
女码农的重启
python数据分析开发语言
数据分析与可视化是数据科学领域的核心技能,Python凭借其丰富的库生态和灵活的编程范式,成为该领域的首选工具。本文将系统讲解Python数据分析与可视化的技术栈实现,从基础操作到性能优化,结合实战场景提供可复用的解决方案。数据分析核心库技术解析Pandas数据处理引擎原理Pandas作为数据分析的基石,其核心优势在于基于NumPy的矢量运算和高效的内存管理。与Excel的单元格级操作不同,Pan
- Python - 数据分析三剑客之Pandas
MinggeQingchun
PythonPythonPandas
阅读前可参考NumPy文章https://blog.csdn.net/MinggeQingchun/article/details/148253682https://blog.csdn.net/MinggeQingchun/article/details/148253682Pandas是Python中一个强大的开源数据分析库,专门用于处理结构化数据(如表格、时间序列等),其核心数据结构为Seri
- Python的科学计算库NumPy(一)
linlin_1998
pythonnumpy开发语言
NumPy(NumericalPython)是Python中最基础、最重要的科学计算库之一,提供了高性能的多维数组(ndarray)对象和大量数学函数,是许多数据科学、机器学习库(如Pandas、SciPy、TensorFlow等)的基础依赖。1.创建一个numpy里面的一维数组importnumpyasnp###通过array方法创建一个ndarrayarray1=np.array([1,2,3
- 24GB GPU 中的 DeepSeek R1:Unsloth AI 针对 671B 参数模型进行动态量化
知识大胖
NVIDIAGPU和大语言模型开发教程人工智能deepseekollama
简介最初的DeepSeekR1是一个拥有6710亿个参数的语言模型,UnslothAI团队对其进行了动态量化,将模型大小减少了80%(从720GB减少到131GB),同时保持了强大的性能。当添加模型卸载功能时,该模型可以在24GBVRAM下以低令牌/秒的推理速度运行。推荐文章《本地构建AI智能分析助手之01快速安装,使用PandasAI和Ollama进行数据分析,用自然语言向你公司的数据提问为决策
- Python Day9
@浙大疏锦行PythonDay9.内容:热力图的绘制enumerate()方法子图的绘制代码:list_nums=[1,2,3,4,5,6]forindex,valinenumerate(list_nums):print(f"index={index},val={val}")forvalinlist_nums:print(f"val={val}")importpandasaspdimportmat
- python-pandas数据分析+案例分析
文章目录前言一、汽车销售数据可视化分析1.各年度汽车总销量及环比,各车类、级别车辆销量及环比2.车辆销售规模及环比、不同价位车销量及环比3.各车系、厂商、品牌车销量及环比,市占率及变化趋势4.品牌、车类、车型、级别的各top销量二、地质灾害航空公司客户价值分析1.原始数据存在少量的缺失值和异常值前言一、汽车销售数据可视化分析1.各年度汽车总销量及环比,各车类、级别车辆销量及环比importnump
- pandas销售数据分析
pandas销售数据分析数据保存在data目录消费者数据:customers.csv商品数据:products.csv交易数据:transactions.csvcustomers.csv数据结构:字段描述customer_id客户IDgender性别age年龄region地区membership_date会员日期products.csv数据结构:字段描述product_id产品IDcategory
- 基于Python的旅游数据可视化应用
摘要本文详细介绍了一个功能完善的基于Python语言开发的旅游行业数据可视化分析应用系统。该系统采用Pandas这一强大的数据处理库进行数据清洗、转换和预处理工作,确保数据质量可靠。在可视化展示方面,系统整合了Matplotlib和Seaborn两大主流可视化库,通过丰富的图表类型直观呈现数据分析结果。特别值得一提的是,所有可视化图表均采用统一的绿色主题配色方案,这种设计不仅美观大方,更能突出体现
- Pandas 学习教程
_pass_
Data-Alaysispandas信息可视化
目录定义基本操作一维数组操作二维数组操作数据选择过滤数据处理数据清洗数据转换数据分析排序分组聚合数据透视表高级操作合并数据时间序列处理自定义函数调用数据可视化集成数据导出和导入大数据分块处理定义全称:'paneldata'and'pythondataanalysis'Analy:Series(一维数据)、DataFrame(二维数据)主要应用:数据清洗:处理缺失数据、重复数据等数据转换:改变数据的
- 【Python基础】最强 Pandas 平替 -- Polars
程序媛阿紫
pythonpandas开发语言
Polars是一个用于操作结构化数据的高性能DataFrame库,可以说是平替pandas最有潜质的包。Polars其核心部分是用Rust编写的,但该库也提供了Python接口。它的主要特点包括:快速:Polars是从零开始编写的,紧密与机器结合,没有外部依赖。I/O:对所有常见数据存储层提供一流支持:本地、云存储和数据库。易于使用:以原始意图编写查询。Polars在内部会使用其查询优化器确定执行
- pandas学习笔记
kara_486
pandas学习笔记
pandas是python中一个性能强大的数据处理库,能进行复杂的数据处理。pandas的数据结构分为三种类型,分别为series,DataFrame和index,对于初学者而言,series和DataFrame这两种结构最为重要。下面作者将重点介绍series和DataFrame这两部分。series的介绍series按照作者的目前的理解是pandas库中最基础的组成部分,seriers是由索引
- 使用 Python 和 Pandas 处理 Excel 数据:合并单元格示例
技术探索
1024程序员节
引言在数据处理过程中,我们经常会遇到需要从Excel文件中提取和处理数据的情况。本文将通过一个简单的示例,介绍如何使用Python的Pandas库来读取Excel文件,处理其中的合并单元格,并将结果输出到新的Excel文件中。(这里的合并是列1提取一个数据,列2提取两个数据进行合并)1.准备工作首先,请确保你的系统中已经安装了Pandas库。如果尚未安装,可以通过以下命令进行安装:pipinsta
- Python数据分析案例|从模拟数据到可视化:零售门店客流量差异分析全流程
1.依赖库导入importmatplotlib.pyplotaspltimportnumpyasnpimportpandasaspdfrommatplotlibimportfont_managerfromdatetimeimportdatetimematplotlib.pyplot:用于绘制图表。numpy:numpy:pandas:虽然代码中未font_manager:设置datetime:生成
- 【动手学深度学习】4.10 实战Kaggle比赛:预测房价
XiaoJ1234567
《动手学深度学习》深度学习人工智能
目录4.10实战Kaggle比赛:预测房价1)数据预处理2)模型定义与训练3)模型评估与预测4)模型训练与预测提交5)示例超参数(可调)4.10实战Kaggle比赛:预测房价数据来源:Kaggle房价预测比赛.1)数据预处理读取数据importpandasaspdtrain_data=pd.read_csv('../data/kaggle_house_pred_train.csv')test_da
- 二分查找排序算法
周凡杨
java二分查找排序算法折半
一:概念 二分查找又称
折半查找(
折半搜索/
二分搜索),优点是比较次数少,查找速度快,平均性能好;其缺点是要求待查表为有序表,且插入删除困难。因此,折半查找方法适用于不经常变动而 查找频繁的有序列表。首先,假设表中元素是按升序排列,将表中间位置记录的关键字与查找关键字比较,如果两者相等,则查找成功;否则利用中间位置记录将表 分成前、后两个子表,如果中间位置记录的关键字大于查找关键字,则进一步
- java中的BigDecimal
bijian1013
javaBigDecimal
在项目开发过程中出现精度丢失问题,查资料用BigDecimal解决,并发现如下这篇BigDecimal的解决问题的思路和方法很值得学习,特转载。
原文地址:http://blog.csdn.net/ugg/article/de
- Shell echo命令详解
daizj
echoshell
Shell echo命令
Shell 的 echo 指令与 PHP 的 echo 指令类似,都是用于字符串的输出。命令格式:
echo string
您可以使用echo实现更复杂的输出格式控制。 1.显示普通字符串:
echo "It is a test"
这里的双引号完全可以省略,以下命令与上面实例效果一致:
echo Itis a test 2.显示转义
- Oracle DBA 简单操作
周凡杨
oracle dba sql
--执行次数多的SQL
select sql_text,executions from (
select sql_text,executions from v$sqlarea order by executions desc
) where rownum<81;
&nb
- 画图重绘
朱辉辉33
游戏
我第一次接触重绘是编写五子棋小游戏的时候,因为游戏里的棋盘是用线绘制的,而这些东西并不在系统自带的重绘里,所以在移动窗体时,棋盘并不会重绘出来。所以我们要重写系统的重绘方法。
在重写系统重绘方法时,我们要注意一定要调用父类的重绘方法,即加上super.paint(g),因为如果不调用父类的重绘方式,重写后会把父类的重绘覆盖掉,而父类的重绘方法是绘制画布,这样就导致我们
- 线程之初体验
西蜀石兰
线程
一直觉得多线程是学Java的一个分水岭,懂多线程才算入门。
之前看《编程思想》的多线程章节,看的云里雾里,知道线程类有哪几个方法,却依旧不知道线程到底是什么?书上都写线程是进程的模块,共享线程的资源,可是这跟多线程编程有毛线的关系,呜呜。。。
线程其实也是用户自定义的任务,不要过多的强调线程的属性,而忽略了线程最基本的属性。
你可以在线程类的run()方法中定义自己的任务,就跟正常的Ja
- linux集群互相免登陆配置
林鹤霄
linux
配置ssh免登陆
1、生成秘钥和公钥 ssh-keygen -t rsa
2、提示让你输入,什么都不输,三次回车之后会在~下面的.ssh文件夹中多出两个文件id_rsa 和 id_rsa.pub
其中id_rsa为秘钥,id_rsa.pub为公钥,使用公钥加密的数据只有私钥才能对这些数据解密 c
- mysql : Lock wait timeout exceeded; try restarting transaction
aigo
mysql
原文:http://www.cnblogs.com/freeliver54/archive/2010/09/30/1839042.html
原因是你使用的InnoDB 表类型的时候,
默认参数:innodb_lock_wait_timeout设置锁等待的时间是50s,
因为有的锁等待超过了这个时间,所以抱错.
你可以把这个时间加长,或者优化存储
- Socket编程 基本的聊天实现。
alleni123
socket
public class Server
{
//用来存储所有连接上来的客户
private List<ServerThread> clients;
public static void main(String[] args)
{
Server s = new Server();
s.startServer(9988);
}
publi
- 多线程监听器事件模式(一个简单的例子)
百合不是茶
线程监听模式
多线程的事件监听器模式
监听器时间模式经常与多线程使用,在多线程中如何知道我的线程正在执行那什么内容,可以通过时间监听器模式得到
创建多线程的事件监听器模式 思路:
1, 创建线程并启动,在创建线程的位置设置一个标记
2,创建队
- spring InitializingBean接口
bijian1013
javaspring
spring的事务的TransactionTemplate,其源码如下:
public class TransactionTemplate extends DefaultTransactionDefinition implements TransactionOperations, InitializingBean{
...
}
TransactionTemplate继承了DefaultT
- Oracle中询表的权限被授予给了哪些用户
bijian1013
oracle数据库权限
Oracle查询表将权限赋给了哪些用户的SQL,以备查用。
select t.table_name as "表名",
t.grantee as "被授权的属组",
t.owner as "对象所在的属组"
- 【Struts2五】Struts2 参数传值
bit1129
struts2
Struts2中参数传值的3种情况
1.请求参数绑定到Action的实例字段上
2.Action将值传递到转发的视图上
3.Action将值传递到重定向的视图上
一、请求参数绑定到Action的实例字段上以及Action将值传递到转发的视图上
Struts可以自动将请求URL中的请求参数或者表单提交的参数绑定到Action定义的实例字段上,绑定的规则使用ognl表达式语言
- 【Kafka十四】关于auto.offset.reset[Q/A]
bit1129
kafka
I got serveral questions about auto.offset.reset. This configuration parameter governs how consumer read the message from Kafka when there is no initial offset in ZooKeeper or
- nginx gzip压缩配置
ronin47
nginx gzip 压缩范例
nginx gzip压缩配置 更多
0
nginx
gzip
配置
随着nginx的发展,越来越多的网站使用nginx,因此nginx的优化变得越来越重要,今天我们来看看nginx的gzip压缩到底是怎么压缩的呢?
gzip(GNU-ZIP)是一种压缩技术。经过gzip压缩后页面大小可以变为原来的30%甚至更小,这样,用
- java-13.输入一个单向链表,输出该链表中倒数第 k 个节点
bylijinnan
java
two cursors.
Make the first cursor go K steps first.
/*
* 第 13 题:题目:输入一个单向链表,输出该链表中倒数第 k 个节点
*/
public void displayKthItemsBackWard(ListNode head,int k){
ListNode p1=head,p2=head;
- Spring源码学习-JdbcTemplate queryForObject
bylijinnan
javaspring
JdbcTemplate中有两个可能会混淆的queryForObject方法:
1.
Object queryForObject(String sql, Object[] args, Class requiredType)
2.
Object queryForObject(String sql, Object[] args, RowMapper rowMapper)
第1个方法是只查
- [冰川时代]在冰川时代,我们需要什么样的技术?
comsci
技术
看美国那边的气候情况....我有个感觉...是不是要进入小冰期了?
那么在小冰期里面...我们的户外活动肯定会出现很多问题...在室内呆着的情况会非常多...怎么在室内呆着而不发闷...怎么用最低的电力保证室内的温度.....这都需要技术手段...
&nb
- js 获取浏览器型号
cuityang
js浏览器
根据浏览器获取iphone和apk的下载地址
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8" content="text/html"/>
<meta name=
- C# socks5详解 转
dalan_123
socketC#
http://www.cnblogs.com/zhujiechang/archive/2008/10/21/1316308.html 这里主要讲的是用.NET实现基于Socket5下面的代理协议进行客户端的通讯,Socket4的实现是类似的,注意的事,这里不是讲用C#实现一个代理服务器,因为实现一个代理服务器需要实现很多协议,头大,而且现在市面上有很多现成的代理服务器用,性能又好,
- 运维 Centos问题汇总
dcj3sjt126com
云主机
一、sh 脚本不执行的原因
sh脚本不执行的原因 只有2个
1.权限不够
2.sh脚本里路径没写完整。
二、解决You have new mail in /var/spool/mail/root
修改/usr/share/logwatch/default.conf/logwatch.conf配置文件
MailTo =
MailFrom
三、查询连接数
- Yii防注入攻击笔记
dcj3sjt126com
sqlWEB安全yii
网站表单有注入漏洞须对所有用户输入的内容进行个过滤和检查,可以使用正则表达式或者直接输入字符判断,大部分是只允许输入字母和数字的,其它字符度不允许;对于内容复杂表单的内容,应该对html和script的符号进行转义替换:尤其是<,>,',"",&这几个符号 这里有个转义对照表:
http://blog.csdn.net/xinzhu1990/articl
- MongoDB简介[一]
eksliang
mongodbMongoDB简介
MongoDB简介
转载请出自出处:http://eksliang.iteye.com/blog/2173288 1.1易于使用
MongoDB是一个面向文档的数据库,而不是关系型数据库。与关系型数据库相比,面向文档的数据库不再有行的概念,取而代之的是更为灵活的“文档”模型。
另外,不
- zookeeper windows 入门安装和测试
greemranqq
zookeeper安装分布式
一、序言
以下是我对zookeeper 的一些理解: zookeeper 作为一个服务注册信息存储的管理工具,好吧,这样说得很抽象,我们举个“栗子”。
栗子1号:
假设我是一家KTV的老板,我同时拥有5家KTV,我肯定得时刻监视
- Spring之使用事务缘由(2-注解实现)
ihuning
spring
Spring事务注解实现
1. 依赖包:
1.1 spring包:
spring-beans-4.0.0.RELEASE.jar
spring-context-4.0.0.
- iOS App Launch Option
啸笑天
option
iOS 程序启动时总会调用application:didFinishLaunchingWithOptions:,其中第二个参数launchOptions为NSDictionary类型的对象,里面存储有此程序启动的原因。
launchOptions中的可能键值见UIApplication Class Reference的Launch Options Keys节 。
1、若用户直接
- jdk与jre的区别(_)
macroli
javajvmjdk
简单的说JDK是面向开发人员使用的SDK,它提供了Java的开发环境和运行环境。SDK是Software Development Kit 一般指软件开发包,可以包括函数库、编译程序等。
JDK就是Java Development Kit JRE是Java Runtime Enviroment是指Java的运行环境,是面向Java程序的使用者,而不是开发者。 如果安装了JDK,会发同你
- Updates were rejected because the tip of your current branch is behind
qiaolevip
学习永无止境每天进步一点点众观千象git
$ git push joe prod-2295-1
To
[email protected]:joe.le/dr-frontend.git
! [rejected] prod-2295-1 -> prod-2295-1 (non-fast-forward)
error: failed to push some refs to '
[email protected]
- [一起学Hive]之十四-Hive的元数据表结构详解
superlxw1234
hivehive元数据结构
关键字:Hive元数据、Hive元数据表结构
之前在 “[一起学Hive]之一–Hive概述,Hive是什么”中介绍过,Hive自己维护了一套元数据,用户通过HQL查询时候,Hive首先需要结合元数据,将HQL翻译成MapReduce去执行。
本文介绍一下Hive元数据中重要的一些表结构及用途,以Hive0.13为例。
文章最后面,会以一个示例来全面了解一下,
- Spring 3.2.14,4.1.7,4.2.RC2发布
wiselyman
Spring 3
Spring 3.2.14、4.1.7及4.2.RC2于6月30日发布。
其中Spring 3.2.1是一个维护版本(维护周期到2016-12-31截止),后续会继续根据需求和bug发布维护版本。此时,Spring官方强烈建议升级Spring框架至4.1.7 或者将要发布的4.2 。
其中Spring 4.1.7主要包含这些更新内容。