最小均方误差推导(RPML )

最小均方误差推导(RPML )_第1张图片
最小均方误差推导(RPML )_第2张图片推导如下


A = t − Φ w A=t-\Phi w A=tΦw
d A = t − Φ d w = − Φ d w dA=t-\Phi dw=-\Phi dw dA=tΦdw=Φdw
f = A T R A f=A^TRA f=ATRA
d f = ( d A ) T R A + A T R d A df=(dA)^TRA+A^TRdA df=(dA)TRA+ATRdA d f = t r ( ( d A ) T R A + A T R d A ) df=tr((dA)^TRA+A^TRdA) df=tr((dA)TRA+ATRdA) d f = t r ( A T R T d A + A T R d A ) df=tr(A^TR^TdA+A^TRdA) df=tr(ATRTdA+ATRdA) = t r ( A T ( R T + R ) d A ) =tr(A^T(R^T+R)dA) =tr(AT(RT+R)dA) = t r ( 2 A T R d A ) =tr(2A^TRdA) =tr(2ATRdA) d f = − t r ( 2 A T R Φ d w ) df=-tr(2A^TR\Phi dw) df=tr(2ATRΦdw)
由于 d f = ( ( ∂ f ∂ w ) T d w ) df=(( \frac{\partial f}{\partial w} )^Tdw ) df=(wf)Tdw
∂ f ∂ w = Φ T R T A \frac{\partial f}{\partial w}=\Phi^TR^TA wf=ΦTRTA = Φ T R T ( t − Φ w ) =\Phi^TR^T(t-\Phi w) =ΦTRT(tΦw) = Φ T R ( t − Φ w ) =\Phi^TR(t-\Phi w) =ΦTR(tΦw)
∂ f ∂ w = = 0 \frac{\partial f}{\partial w}==0 wf==0 Φ T R t = Φ T R Φ w \Phi ^TRt=\Phi^TR\Phi w ΦTRt=ΦTRΦw w ∗ = ( Φ T R Φ ) − 1 Φ T R t w^{*}=(\Phi^TR\Phi)^{-1}\Phi^T Rt w=(ΦTRΦ)1ΦTRt

你可能感兴趣的:(机器学习)