回归类(预测)模型评价指标(MAE、MSE、RMSE、R平方、MAPE)

Regression metrics

\large MAE=\frac{1}{n_{samples}} \sum_{i=1}^{n_{samples}}\left | y_{test}-y_{testpredict} \right |

\large MSE=\frac{1}{n_{samples}}\sum_{i=1}^{n_{samples}}\left ( y_{test}-y_{testpredict} \right )^{2}

\large RMSE=\sqrt{\frac{1}{n_{samples}}\sum_{i=1}^{n_{samples}}\left ( y_{test}-y_{testpredict} \right )^{2}}

\large R^{2}=1-\frac{\sum_{i=1}^{n}\left ( y_{test}-y_{testpredict} \right )^{2}}{\sum_{i=1}^{n}\left ( y_{test} - y_{average} \right )^{2}}

\large MAPE=\frac{1}{n}\sum_{i=1}^{n}\left | \frac{y_{test}-y_{testpredict}}{y_{test}} \right |

from sklearn.metrics import mean_absolute_error
from sklearn.metrics import mean_squared_error
from sklearn.metrics import r2_score
from math import sqrt
import numpy as np

MAPE = np.mean(np.abs((test_y - test_predict)/test_y))
print("MAE",mean_absolute_error(test_y,test_predict))
print("MSE",mean_squared_error(test_y,test_predict))
print("RMSE",sqrt(mean_squared_error(test_y,test_predict)))
print("R^2", r2_score(test_y,test_predict))
print("MAPE",MAPE)

https://scikit-learn.org/stable/modules/model_evaluation.html#regression-metrics

 

 

 

你可能感兴趣的:(回归类(预测)模型评价指标(MAE、MSE、RMSE、R平方、MAPE))