无事做学了一下慕课网的scrapy爬虫框架,这里以豆瓣电影Top250爬虫为例子,课程用的MongoDB我这边使用的是mysql
参数 | 含义 |
---|---|
DOWNLOAD_DELAY = 0.5 | 下载延迟 |
DOWNLOADER_MIDDLEWARES= { # 这里的优先级不能相同 ‘crawler.middlewares.my_useragent’: 544,} | 添加自己定义的伪装规则 |
ITEM_PIPELINES= { ‘crawler.pipelines.CrawlerPipeline’: 300,} | 一定要开启pipeline |
# -*- coding: utf-8 -*-
import scrapy
class CrawlerItem(scrapy.Item):
# define the fields for your item here like:
# name = scrapy.Field()
serial_number = scrapy.Field()
movie_name = scrapy.Field()
introduce = scrapy.Field()
star = scrapy.Field()
evaluate = scrapy.Field()
describe = scrapy.Field()
# -*- coding: utf-8 -*-
# 豆瓣top50爬虫案例
import scrapy
from crawler.items import CrawlerItem
class DoubanSpiderSpider(scrapy.Spider):
# 爬虫名,不能和项目名字重复
name = 'douban_spider'
# 允许的域名
allowed_domains = ['movie.douban.com']
# 入口url,扔到调度器里面
start_urls = ['https://movie.douban.com/top250']
# 默认解析方法
def parse(self, response):
# 循环电影条目
movie_list = response.xpath("//div[@class='article']//ol[@class='grid_view']/li")
for item in movie_list:
# 导入items文件创建数据结构
douban_item = CrawlerItem()
# 写详细的xpath,进行数据解析
douban_item['serial_number'] = int(item.xpath(".//div[@class='item']//em/text()").extract_first())
douban_item['movie_name'] = item.xpath(".//div[@class='info']/div[@class='hd']/a/span[1]/text()").extract_first()
content = item.xpath(".//div[@class='info']/div[@class='bd']/p[1]/text()").extract()
# content_s = ''
for i_content in content:
# split()以空格为分隔符,取最后一段
content_s = ''.join(i_content.split())
douban_item['introduce'] = content_s
douban_item['star'] = float(item.xpath(".//span[@class='rating_num']/text()").extract_first())
douban_item['evaluate'] = item.xpath(".//div[@class='star']/span[4]/text()").extract_first()
douban_item['describe'] = item.xpath(".//span[@class='inq']/text()").extract_first()
# 解析完,必须送到管道里
yield douban_item
# 解析下一页规则:检测是否有下一页,有连接就取,没有就不取
next_link = response.xpath("//span[@class='next']/link/@href").extract()
if next_link:
nextlink = next_link[0]
yield scrapy.Request("https://movie.douban.com/top250"+nextlink, callback=self.parse)
# settings文件中设定数据库基本参数
# 数据库参数
sql_host = "localhost"
sql_port = 3306
sql_user = "root"
sql_passwd = "186186"
sql_db_name = 'scrapy_crawler'
# 数据库编码
sql_charset = 'utf8'
sql_use_unicode = True
# -*- coding: utf-8 -*-
import pymysql
from crawler.settings import sql_passwd,sql_db_name,sql_host,sql_user,sql_use_unicode,sql_charset,sql_port
# Define your item pipelines here
#
# Don't forget to add your pipeline to the ITEM_PIPELINES setting
# See: https://docs.scrapy.org/en/latest/topics/item-pipeline.html
class CrawlerPipeline(object):
def __init__(self):
# 连接数据库
self.connect = pymysql.connect(
host=sql_host,
port=sql_port,
db=sql_db_name,
user=sql_user,
passwd=sql_passwd,
charset=sql_charset,
use_unicode=sql_use_unicode
)
# 拿到操作数据库的游标
self.cursor = self.connect.cursor()
def process_item(self, item, spider):
# 执行插入操作
self.cursor.execute(
'''
insert into douban_top250 VALUE (%s,%s,%s,%s,%s,%s)
''', (item['serial_number'], item['movie_name'], item['introduce'], item['star'], item['evaluate'], item['describe'])
)
self.connect.commit()
return item
# 编写代理ip,这里无法使用了过期了
class my_proxy(object):
def process_request(self, request, spider):
request.meta['proxy'] = 'http-cla.abuyun.com:9030'
proxy_name_pass = b'H211EATS905745KC:F8FFBC929EB7D5A7'
encode_pass_code = base64.b64encode(proxy_name_pass)
request.headers['Proxy-Authrization'] = 'Basic '+ encode_pass_code.decode()
# 使用user-agent池使用不同的标识访问
class my_useragent(object):
def process_request(self, request, spider):
user_agent_list = [
'Mozilla/5.0 (X11; U; Linux i686; en-US; rv:1.9.0.8) Gecko Fedora/1.9.0.8-1.fc10 Kazehakase/0.5.6',
'Mozilla/5.0 (X11; Linux i686; U;) Gecko/20070322 Kazehakase/0.4.5',
'Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.1 (KHTML, like Gecko) Chrome/21.0.1180.71 Safari/537.1 LBBROWSER',
'Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1; .NET CLR 1.1.4322; .NET CLR 2.0.50727)',
'Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/535.11 (KHTML, like Gecko) Chrome/17.0.963.56 Safari/535.11',
'Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.11 (KHTML, like Gecko) Chrome/23.0.1271.64 Safari/537.11',
'Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1; QQDownload 732; .NET4.0C; .NET4.0E)',
'Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/535.11 (KHTML, like Gecko) Chrome/17.0.963.56 Safari/535.11',
'Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 5.1; Trident/4.0; SV1; QQDownload 732; .NET4.0C; .NET4.0E; 360SE)',
'Mozilla/4.0 (compatible; MSIE 7.0b; Windows NT 5.2; .NET CLR 1.1.4322; .NET CLR 2.0.50727; InfoPath.2; .NET CLR 3.0.04506.30)',
'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_7_3) AppleWebKit/535.20 (KHTML, like Gecko) Chrome/19.0.1036.7 Safari/535.20',
'Mozilla/5.0 (X11; U; Linux i686; en-US; rv:1.9.0.8) Gecko Fedora/1.9.0.8-1.fc10 Kazehakase/0.5.6',
'Mozilla/5.0 (X11; U; Linux x86_64; zh-CN; rv:1.9.2.10) Gecko/20100922 Ubuntu/10.10 (maverick) Firefox/3.6.10',
'Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.1 (KHTML, like Gecko) Chrome/21.0.1180.71 Safari/537.1 LBBROWSER',
'Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.1 (KHTML, like Gecko) Chrome/21.0.1180.89 Safari/537.1',
'Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 6.0; Acoo Browser; SLCC1; .NET CLR 2.0.50727; Media Center PC 5.0; .NET CLR 3.0.04506)',
'Mozilla/5.0 (X11; U; Linux i686; en-US; rv:1.8.0.12) Gecko/20070731 Ubuntu/dapper-security Firefox/1.5.0.12',
'Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1; QQDownload 732; .NET4.0C; .NET4.0E; LBBROWSER)',
'Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.1 (KHTML, like Gecko) Chrome/21.0.1180.89 Safari/537.1',
'Mozilla/5.0 (iPhone; CPU iPhone OS 10_3 like Mac OS X) AppleWebKit/603.1.30 (KHTML, like Gecko) Version/10.3 Mobile/14E277 Safari/603.1.30',
'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_12_6) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/61.0.3163.100 Safari/537.36'
]
agent = random.choice(user_agent_list)
request.headers['User_Agent'] = agent
from scrapy import cmdline
cmdline.execute('scrapy crawl douban_spider'.split())