因为搭建框架比较复杂如果这其中有不足,欢迎提出指正。下面附上实时分析简化框架图帮助理解。
把离线分析框架也附上
实时分析搭建过程:
1.在命令提示符中(Windows+R)找到准备好的SocketTest.java路径,javac SocketTest.java运行后生成SocketTest.class文件(运行前将SocketTest.java中包名删除)
将.class文件拖到linux中指定目录下我设置的是/home/cat/soft/ST 下
将你事先准备好的access.20120104.log(爬虫日志大约300万条记录)也放到ST下,再在ST中新建一个data.log保存即可
2.在一个用户下运行java SocketTest access.20120104.log data.log ----------->data.log是监控access.20120104.log中信息并记录的日志。
在另起一个机器输入 tail -F data.log 这时会在data.log中输出access.20120104.log中的数据
得到结果说明连接成功
3. 开始进行kafka配置文件修改
1、http://flume.apache.org/FlumeUserGuide.html#exec-source
a1.sources = r1
a1.channels = c1
a1.sources.r1.type = exec
a1.sources.r1.command = tail -F /soft/ST/data.log
a1.sources.r1.channels = c1
2、flume1.6权威指南中http://flume.apache.org/releases/content/1.6.0/FlumeUserGuide
agent.sinks.k1.type = org.apache.flume.sink.kafka.KafkaSink
agent.sinks.k1.topic = mytopic
agent.sinks.k1.brokerList = lion:9092
agent.sinks.k1.batchSize = 20
agent.sinks.k1.requiredAcks = 1
完整版
agent.sources = r1
agent.channels = c1
agent.sinks = k1
# For each one of the sources, the type is defined
agent.sources.r1.type = exec
agent.sources.r1.command = tail -F /home/cat/soft/ST/data.log
# The channel can be defined as follows.
agent.sources.r1.channels = c1
# Each sink's type must be defined
agent.sinks.k1.type = org.apache.flume.sink.kafka.KafkaSink
agent.sinks.k1.topic = mytopic
agent.sinks.k1.brokerList = lion:9092
agent.sinks.k1.batchSize = 20
agent.sinks.k1.requiredAcks = 1
#Specify the channel the sink should use
agent.sinks.k1.channel = c1
# Each channel's type is defined.
agent.channels.c1.type = memory
# Other config values specific to each type of channel(sink or source)
# can be defined as well
# In this case, it specifies the capacity of the memory channel
agent.channels.memoryChannel.capacity = 100
现在配置文件更改完毕可以测试了
(1)在一个机器中cd soft/kafka/ 运行 zookeeper-server-start.sh config/zookeeper.properties
(2)在另一台机器中cd soft/kafka/ 运行 kafka-console-consumer.sh --bootstrap-server localhost:9092 --topic mytopic --from-beginning
(3)在另一台机器中cd soft/flume/conf 运行 flume-ng agent --conf /home/cat/soft/flume/conf/ --conf-file tokafka.conf --name agent -Dflume.root.logger=INFO,console (检验一下kafka能否收到flume数据)
(4) 启动flume(用于测试)
flume-ng agent --conf /home/cat/soft/flume/conf/ --conf-file tokafka.conf --name agent -Dflume.root.logger=INFO,console
实际上在 IntelliJ IDEA 2017.2 x64上运行
先把配置文件补充一些https://mvnrepository.com/artifact/org.apache.spark/spark-streaming-kafka-0-10_2.11/2.4.0
org.apache.spark
spark-streaming-kafka-0-10_2.11
2.4.0
package Test1227
import org.apache.spark.SparkConf
import org.apache.spark.streaming.{Seconds, StreamingContext}
import org.apache.kafka.clients.consumer.ConsumerRecord
import org.apache.kafka.common.serialization.StringDeserializer
import org.apache.spark.streaming.kafka010._
import org.apache.spark.streaming.kafka010.LocationStrategies.PreferConsistent
import org.apache.spark.streaming.kafka010.ConsumerStrategies.Subscribe
object StreamingKafka {
def main(args: Array[String]): Unit = {
val conf = new SparkConf().setAppName("nwc").setMaster("local[2]")
val streamingContext = new StreamingContext(conf, Seconds(30))
streamingContext.sparkContext.setLogLevel("ERROR")
val kafkaParams = Map[String, Object](
"bootstrap.servers" -> "lion:9092",
"key.deserializer" -> classOf[StringDeserializer],
"value.deserializer" -> classOf[StringDeserializer],
"group.id" -> "use_a_separate_group_id_for_each_stream",
"auto.offset.reset" -> "latest",
"enable.auto.commit" -> (true: java.lang.Boolean)
)
val topics = Array("mytopic")
val stream = KafkaUtils.createDirectStream[String, String](
streamingContext,
PreferConsistent,
Subscribe[String, String](topics, kafkaParams)
)
stream.map(record => ( record.value().toString)).saveAsTextFiles("D://123//StreamingKafka")
streamingContext.start()
streamingContext.awaitTermination()
streamingContext.stop()
}
}
(5)最后在linux中输入 java SocketTest access.20120104.log data.log
会在本地文件中或 .print 直接在控制台输出结果
(6)mysql中得到结果
将DBUtil.java和db.properties放到idea程序下
将和mysql联系到一起的代码附上
package Test1227
import DButil.DBUtil
import org.apache.spark.SparkConf
import org.apache.spark.streaming.{Seconds, StreamingContext}
import org.apache.kafka.common.serialization.StringDeserializer
import org.apache.log4j.PropertyConfigurator
import org.apache.spark.streaming.kafka010._
import org.apache.spark.streaming.kafka010.LocationStrategies.PreferConsistent
import org.apache.spark.streaming.kafka010.ConsumerStrategies.Subscribe
object StreamingKafka {
def main(args: Array[String]): Unit = {
val conf = new SparkConf().setAppName("nwc").setMaster("local[2]")
val streamingContext = new StreamingContext(conf, Seconds(20))
//streamingContext.sparkContext.setLogLevel("ERROR")
PropertyConfigurator.configure("log4j.properties.template")
val kafkaParams = Map[String, Object](
"bootstrap.servers" -> "lion:9092",
"key.deserializer" -> classOf[StringDeserializer],
"value.deserializer" -> classOf[StringDeserializer],
"group.id" -> "use_a_separate_group_id_for_each_stream",
"auto.offset.reset" -> "latest",
"enable.auto.commit" -> (true: java.lang.Boolean)
)
val topics = Array("mytopic")
val stream = KafkaUtils.createDirectStream[String, String](
streamingContext,
PreferConsistent,
Subscribe[String, String](topics, kafkaParams)
)
// stream.map(record => record.value().toString).saveAsTextFiles("D://123//StreamingKafka")
stream.map(record => record.value().toString).map(_.split(" ")(0))
.map((_,1))
.reduceByKey(_+_)
.repartition(1)
.foreachRDD{rdd => rdd.foreachPartition{partitionOfRecords =>
val connection = DBUtil.getConnection()
val sql = "INSERT INTO mytopic VALUES (?,?)"
partitionOfRecords.foreach{record =>
val stat = connection.prepareStatement(sql)
stat.setString(1,record._1)
stat.setInt(2,record._2)
val n = stat.executeUpdate()
// if(n==1)
// println("写入mysql成功")
}
}
}
streamingContext.start()
streamingContext.awaitTermination()
streamingContext.stop()
}
}
打开命令提示符可以如下操作
先进入mysql--创建一个表
可以运行
启动zookeeper
zookeeper-server-start.sh ~/soft/kafka/config/zookeeper.properties
启动kafka服务
kafka-server-start.sh ~/soft/kafka/config/server.properties
创建主题(可以不启动)
kafka-topics.sh --create --zookeeper localhost:2181 --replication-factor 1 --partitions 1 --topic test
启动SocketTest
java SocketTest access.20120104.log sparktest/data.log
启动flume
flume-ng agent --conf ~/soft/flume/conf --conf-file ~/soft/flume/conf/tokafka.conf --name agent -Dflume.root.logger=INFO,console
可以查看结果了
use bd1802;
select * from mytopic;