pytorch yolov3 代码理解(2)

2. 解读training部分

2.1 training.py

首先从main函数开始。

def main():
    '''
    读取超参数函数以及配置文件。
    '''
    logging.basicConfig(level=logging.DEBUG,
                        format="[%(asctime)s %(filename)s] %(message)s")

    if len(sys.argv) != 2:
        logging.error("Usage: python training.py params.py")
        sys.exit()
    params_path = sys.argv[1]
    if not os.path.isfile(params_path):
        logging.error("no params file found! path: {}".format(params_path))
        sys.exit()
    config = importlib.import_module(params_path[:-3]).TRAINING_PARAMS
    config["batch_size"] *= len(config["parallels"])

    # Create sub_working_dir
    '''
    working_dir/model_params/size(backbone_name)x(img_w)_try(img_h)/try
    这个路径即存储训练后的模型。
    '''
    sub_working_dir = '{}/{}/size{}x{}_try{}/{}'.format(
        config['working_dir'], config['model_params']['backbone_name'], 
        config['img_w'], config['img_h'], config['try'],
        time.strftime("%Y%m%d%H%M%S", time.localtime()))
    if not os.path.exists(sub_working_dir):
        os.makedirs(sub_working_dir)
    config["sub_working_dir"] = sub_working_dir
    logging.info("sub working dir: %s" % sub_working_dir)

    # Creat tf_summary writer
    '''
    根据上边训练出来的模型,读取文件中内容,用tensorboard导出训练损失曲线图。
    '''
    config["tensorboard_writer"] = SummaryWriter(sub_working_dir)
    logging.info("Please using 'python -m tensorboard.main --logdir={}'".format(sub_working_dir))

    # Start training
    os.environ["CUDA_VISIBLE_DEVICES"] = ','.join(map(str, config["parallels"]))
    train(config)

if __name__ == "__main__":
main()

在此插入params.py,定义网络超参数。

TRAINING_PARAMS = \
{
    "model_params": {
        "backbone_name": "darknet_53",
        "backbone_pretrained": "../weights/darknet53_weights_pytorch.pth", #  set empty to disable
    },
    "yolo": {
        "anchors": [[[116, 90], [156, 198], [373, 326]],
                    [[30, 61], [62, 45], [59, 119]],
                    [[10, 13], [16, 30], [33, 23]]],
        "classes": 20,   #该网络在voc2012上训练
    },
    "lr": {
        "backbone_lr": 0.001,
        "other_lr": 0.01,
        "freeze_backbone": False,   #  freeze backbone wegiths to finetune
        "decay_gamma": 0.1,        #衰减指数,
        "decay_step": 20,           # 衰减速度,即每迭代多少轮就衰减的度量值。值为20就代表当前迭代轮数达到20时就给学习率乘上0.1(衰减指数)的1次方,达到40时就给学习率乘上0.1(衰减指数)的2次方。
    },
    "optimizer": {
        "type": "sgd",
        "weight_decay": 4e-05,
    },
    "batch_size": 4,
    "train_path": "../data/coco/trainvalno5k.txt",
    "epochs": 100,
    "img_h": 416,
    "img_w": 416,
    "parallels": [0],                         #  config GPU device
    "working_dir": "YOUR_WORKING_DIR",              #  replace with your working dir
    "pretrain_snapshot": "",                        #  load checkpoint
    "evaluate_type": "", 
    "try": 0,
    "export_onnx": False,
}

 

2.1.1 train(config)函数

def train(config):
    '''
    param:config,即函数params.py中的参数。
    return:
    '''
    config["global_step"] = config.get("start_step", 0)
    is_training = False if config.get("export_onnx") else True

    # Load and initialize network
    net = ModelMain(config, is_training=is_training)
    net.train(is_training)

    # Optimizer and learning rate
    '''
    lr_scheduler.StepLR()
    Assuming optimizer uses lr = 0.05 for all groups
    lr = 0.05     if epoch < 20
    lr = 0.005    if 20 <= epoch < 40
    lr = 0.0005   if 40 <= epoch < 80
    '''
    optimizer = _get_optimizer(config, net)
    lr_scheduler = optim.lr_scheduler.StepLR(
        optimizer,
        step_size=config["lr"]["decay_step"],
        gamma=config["lr"]["decay_gamma"])

    # Set data parallel
    net = nn.DataParallel(net)
    net = net.cuda()

    # Restore pretrain model
    if config["pretrain_snapshot"]:
        logging.info("Load pretrained weights from {}".format(config["pretrain_snapshot"]))
        state_dict = torch.load(config["pretrain_snapshot"])
        net.load_state_dict(state_dict)

    # YOLO loss with 3 scales
    '''
    此处yolo_losses 应该返回什么?
    '''
    yolo_losses = []
    for i in range(3):
        yolo_losses.append(YOLOLoss(config["yolo"]["anchors"][i],
                                    config["yolo"]["classes"], (config["img_w"], config["img_h"])))

    # DataLoader
    dataloader = torch.utils.data.DataLoader(COCODataset(config["train_path"],
                                                         (config["img_w"], config["img_h"]),
                                                         is_training=True),
                                             batch_size=config["batch_size"],
                                             shuffle=True, num_workers=32, pin_memory=True)
# Start the training loop
    '''
    训练部分从此处开始。
    batch_size = 4
    step = len(images)/4 即一个epoch分成了多少个batch。
    samples是每个batch_size的输入图片张量和target张量。
    '''
    logging.info("Start training.")
    for epoch in range(config["epochs"]):
        '''
           samples为一个字典,其中有四个key,分别为image,label,image_path,orginal_size.
            value分别为batch_size个输入图片,输入标签,路径,原始尺寸大小。
        '''
        for step, samples in enumerate(dataloader):
            images, labels = samples["image"], samples["label"]
            start_time = time.time()
            config["global_step"] += 1     #这个地方的global_step在params.py中并没有出现。

            # Forward and backward
            optimizer.zero_grad()
            outputs = net(images)
            losses_name = ["total_loss", "x", "y", "w", "h", "conf", "cls"]
            losses = []
            for _ in range(len(losses_name)):
                losses.append([])
            for i in range(3):
                _loss_item = yolo_losses[i](outputs[i], labels)
                for j, l in enumerate(_loss_item):
                    losses[j].append(l)
            losses = [sum(l) for l in losses]
            loss = losses[0]
            loss.backward()
            optimizer.step()

            if step > 0 and step % 10 == 0:
                _loss = loss.item()
                duration = float(time.time() - start_time)
                example_per_second = config["batch_size"] / duration
                lr = optimizer.param_groups[0]['lr']
                logging.info(
                    "epoch [%.3d] iter = %d loss = %.2f example/sec = %.3f lr = %.5f "%
                    (epoch, step, _loss, example_per_second, lr)
                )
                config["tensorboard_writer"].add_scalar("lr",
                                                        lr,
                                                        config["global_step"])
                config["tensorboard_writer"].add_scalar("example/sec",
                                                        example_per_second,
                                                        config["global_step"])
                for i, name in enumerate(losses_name):
                    value = _loss if i == 0 else losses[i]
                    config["tensorboard_writer"].add_scalar(name,
                                                            value,
                                                            config["global_step"])

            if step > 0 and step % 1000 == 0:
                # net.train(False)
                _save_checkpoint(net.state_dict(), config)
                # net.train(True)

        lr_scheduler.step()

    # net.train(False)
    _save_checkpoint(net.state_dict(), config)
    # net.train(True)
    logging.info("Bye~")

# best_eval_result = 0.0
def _save_checkpoint(state_dict, config, evaluate_func=None):
    # global best_eval_result
    checkpoint_path = os.path.join(config["sub_working_dir"], "model.pth")
    torch.save(state_dict, checkpoint_path)
    logging.info("Model checkpoint saved to %s" % checkpoint_path)
    # eval_result = evaluate_func(config)
    # if eval_result > best_eval_result:
        # best_eval_result = eval_result
        # logging.info("New best result: {}".format(best_eval_result))
        # best_checkpoint_path = os.path.join(config["sub_working_dir"], 'model_best.pth')
        # shutil.copyfile(checkpoint_path, best_checkpoint_path)
        # logging.info("Best checkpoint saved to {}".format(best_checkpoint_path))
    # else:
        # logging.info("Best result: {}".format(best_eval_result))

 

(1)_get_optimizer()函数:

def _get_optimizer(config, net):
    '''
    params:params超参数,net网络
    return:优化器。
    '''
    optimizer = None

    # Assign different lr for each layer
    params = None
    base_params = list(
        map(id, net.backbone.parameters())
    )
    logits_params = filter(lambda p: id(p) not in base_params, net.parameters())
    

    '''
    freeze_backbone即冻结主干网络微调,即不允许网络在训练的时候微调darknet53网络。
    在本代码params.py中,freeze_backbone = false,即允许微调。
    实现学习率的调整。
    
    '''

    if not config["lr"]["freeze_backbone"]:
        params = [
            {"params": logits_params, "lr": config["lr"]["other_lr"]},
            {"params": net.backbone.parameters(), "lr": config["lr"]["backbone_lr"]},
        ]
    else:
        logging.info("freeze backbone's parameters.")
        for p in net.backbone.parameters():
            p.requires_grad = False
        params = [
            {"params": logits_params, "lr": config["lr"]["other_lr"]},
        ]

    # Initialize optimizer class
    if config["optimizer"]["type"] == "adam":
        optimizer = optim.Adam(params, weight_decay=config["optimizer"]["weight_decay"])
    elif config["optimizer"]["type"] == "amsgrad":
        optimizer = optim.Adam(params, weight_decay=config["optimizer"]["weight_decay"],
                               amsgrad=True)
    elif config["optimizer"]["type"] == "rmsprop":
        optimizer = optim.RMSprop(params, weight_decay=config["optimizer"]["weight_decay"])
    else:
        # Default to sgd
        logging.info("Using SGD optimizer.")
        optimizer = optim.SGD(params, momentum=0.9,
                              weight_decay=config["optimizer"]["weight_decay"],
                              nesterov=(config["optimizer"]["type"] == "nesterov"))

    return optimizer

(2) 返回值dataloader处,用了torch.utils.data.DataLoader函数,即将数据放进神经网络进行学习,可以理解为将我们的数据集分成一小批一小批的,再放到神经网络里。其中参数部分用到了COCODataset函数,因此接下来我们讲解common/coco_dataset.py函数。

class COCODataset(Dataset):
    '''
    params:train_path,(img_w,img_h),is_training.
    return:
    为什么会有__init__,__getitem__,__len__三个函数,作用是什么?
    '''
    def __init__(self, list_path, img_size, is_training, is_debug=False):
        self.img_files = []
        self.label_files = []
        for path in open(list_path, 'r'):
            label_path = path.replace('images', 'labels').replace('.png', '.txt').replace(
                '.jpg', '.txt').strip()
            if os.path.isfile(label_path):
                self.img_files.append(path)
                self.label_files.append(label_path)
            else:
                logging.info("no label found. skip it: {}".format(path))
        logging.info("Total images: {}".format(len(self.img_files)))
        self.img_size = img_size  # (w, h)
        self.max_objects = 50
        self.is_debug = is_debug

        #  transforms and augmentation
        self.transforms = data_transforms.Compose()
        if is_training:
            self.transforms.add(data_transforms.ImageBaseAug())
        # self.transforms.add(data_transforms.KeepAspect())
        self.transforms.add(data_transforms.ResizeImage(self.img_size))
        self.transforms.add(data_transforms.ToTensor(self.max_objects, self.is_debug))

    def __getitem__(self, index):
    '''
    此处作用在不断读取一个epoch内多个batch的图片和label并转换为tensor形式。
    '''
        img_path = self.img_files[index % len(self.img_files)].rstrip()
        img = cv2.imread(img_path, cv2.IMREAD_COLOR)
        if img is None:
            raise Exception("Read image error: {}".format(img_path))
        ori_h, ori_w = img.shape[:2]
        img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)

        label_path = self.label_files[index % len(self.img_files)].rstrip()
        if os.path.exists(label_path):
            labels = np.loadtxt(label_path).reshape(-1, 5)
        else:
            logging.info("label does not exist: {}".format(label_path))
            labels = np.zeros((1, 5), np.float32)

        sample = {'image': img, 'label': labels}
        if self.transforms is not None:
            sample = self.transforms(sample)
        sample["image_path"] = img_path
        sample["origin_size"] = str([ori_w, ori_h])
        return sample

    def __len__(self):
        return len(self.img_files)

 

(3)COCODataset中先读取了数据集中images和对应的labels,之后进行数据增强,对common/data_transforms.py进行讲解。

class Compose(object):
    """Composes several transforms together.
    Args:
        transforms (list of ``Transform`` objects): list of transforms to compose.
    """
    def __init__(self, transforms=[]):
        self.transforms = transforms

    def __call__(self, img):
        for t in self.transforms:
            img = t(img)
        return img

    def add(self, transform):
        self.transforms.append(transform)


class ToTensor(object):
    '''
    转换数据类型+归一化+transpose(即将原数组做转置。若是三维(0,1,2)则转为(2,1,0)+转换数据类型)
    filled_labels执行的操作没有看明白,待查证。
    '''
    def __init__(self, max_objects=50, is_debug=False):
        self.max_objects = max_objects
        self.is_debug = is_debug

    def __call__(self, sample):
        image, labels = sample['image'], sample['label']
        if self.is_debug == False:
            image = image.astype(np.float32)
            image /= 255.0
            image = np.transpose(image, (2, 0, 1))
            image = image.astype(np.float32)

        filled_labels = np.zeros((self.max_objects, 5), np.float32)
        filled_labels[range(len(labels))[:self.max_objects]] = labels[:self.max_objects]
        return {'image': torch.from_numpy(image), 'label': torch.from_numpy(filled_labels)}

class KeepAspect(object):
    '''
    此处执行图像的缩放操作。
    '''
    def __init__(self):
        pass

    def __call__(self, sample):
        image, label = sample['image'], sample['label']

        h, w, _ = image.shape
        dim_diff = np.abs(h - w)
        # Upper (left) and lower (right) padding
        pad1, pad2 = dim_diff // 2, dim_diff - dim_diff // 2
        # Determine padding
        pad = ((pad1, pad2), (0, 0), (0, 0)) if h <= w else ((0, 0), (pad1, pad2), (0, 0))
        # Add padding
        image_new = np.pad(image, pad, 'constant', constant_values=128)
        padded_h, padded_w, _ = image_new.shape

        # Extract coordinates for unpadded + unscaled image
        x1 = w * (label[:, 1] - label[:, 3]/2)
        y1 = h * (label[:, 2] - label[:, 4]/2)
        x2 = w * (label[:, 1] + label[:, 3]/2)
        y2 = h * (label[:, 2] + label[:, 4]/2)
        # Adjust for added padding
        x1 += pad[1][0]
        y1 += pad[0][0]
        x2 += pad[1][0]
        y2 += pad[0][0]
        # Calculate ratios from coordinates
        label[:, 1] = ((x1 + x2) / 2) / padded_w
        label[:, 2] = ((y1 + y2) / 2) / padded_h
        label[:, 3] *= w / padded_w
        label[:, 4] *= h / padded_h

        return {'image': image_new, 'label': label}

class ResizeImage(object):
    def __init__(self, new_size, interpolation=cv2.INTER_LINEAR):
        self.new_size = tuple(new_size) #  (w, h)
        self.interpolation = interpolation

    def __call__(self, sample):
        image, label = sample['image'], sample['label']
        image = cv2.resize(image, self.new_size, interpolation=self.interpolation)
        return {'image': image, 'label': label}

class ImageBaseAug(object):
    def __init__(self):
        sometimes = lambda aug: iaa.Sometimes(0.5, aug)
        self.seq = iaa.Sequential(
            [
                # Blur each image with varying strength using
                # gaussian blur (sigma between 0 and 3.0),
                # average/uniform blur (kernel size between 2x2 and 7x7)
                # median blur (kernel size between 3x3 and 11x11).
                #下面三个方法选择其中一个。
                iaa.OneOf([
                    iaa.GaussianBlur((0, 3.0)),
                    iaa.AverageBlur(k=(2, 7)),
                    iaa.MedianBlur(k=(3, 11)),
                ]),
                # Sharpen each image, overlay the result with the original
                # image using an alpha between 0 (no sharpening) and 1
                # (full sharpening effect).
                #用于锐化图像并且与原始图像叠加。
                sometimes(iaa.Sharpen(alpha=(0, 0.5), lightness=(0.75, 1.5))),
                # 添加高斯噪声。
                sometimes(iaa.AdditiveGaussianNoise(loc=0, scale=(0.0, 0.05*255), per_channel=0.5)),
                # 每个像素加上 -5 to 5 的值。
                sometimes(iaa.Add((-5, 5), per_channel=0.5)),
                # 改变图像的亮度。 (80-120% of original value).
                sometimes(iaa.Multiply((0.8, 1.2), per_channel=0.5)),
                # 调节图片的对比度。
                sometimes(iaa.ContrastNormalization((0.5, 2.0), per_channel=0.5)),
            ],
            # do all of the above augmentations in random order
            random_order=True
        )

    def __call__(self, sample):
        seq_det = self.seq.to_deterministic()
        image, label = sample['image'], sample['label']
        image = seq_det.augment_images([image])[0]
        return {'image': image, 'label': label}

 

你可能感兴趣的:(pytorch yolov3 代码理解(2))