本文转载自https://www.jianshu.com/p/00cda1568157
在Python中,能够直接处理的数据类型有以下几种:整数、浮点数、字符串、布尔值、列表、元组、字典、集合。
Python可以处理任意大小的整数,例如:1,100,-80,0,等等。
计算机由于使用二进制,所以有时候用十六进制表示整数比较方便,十六进制用0x前缀和0-9,a-f表示,例如:0xff00,0x15a7b4,等等。
浮点数也就是小数,之所以称为浮点数,是因为按照科学记数法表示时,一个浮点数的小数点位置是可变的,比如,1.23x105和12.3x104是完全相等的。浮点数可以用数学写法,如1.2,3.141,-7.356,等等。
对于很大或很小的浮点数,必须用科学计数法表示,把10用e替代,1.23x105就是1.23e5,或者12.3e8,0.000012可以写成1.2e-5,等等。
整数和浮点数在计算机内部存储的方式是不同的,整数运算永远是精确的,而浮点数运算则可能会有四舍五入的误差。
字符串是以单引号'或双引号"括起来的任意文本,比如'abc',"xyz"等等。字符串'abc'只有a,b,c这3个字符。
转义字符\可以转义很多字符,比如\n表示换行,\t表示制表符,字符\本身也要转义,所以\表示的字符就是\。
布尔值和布尔代数的表示完全一致,一个布尔值只有True、False两种值。在Python中,可以直接用True、False表示布尔值(请注意大小写),也可以通过布尔运算计算出来:
>>> 3 > 2
True
>>> 3 > 5
False
布尔值可以使用and、or和not运算。
and运算是与运算,只有所有都为True,and运算结果才是True:
>>> True and False
False
>>> 3 > 2 and 10 > 9
True
or运算是或运算,只要其中有一个为True,or运算结果就是True:
>>> True or False
True
>>> False or False
False
not运算是非运算,它是一个单目运算符,把True变成False,False变成True:
>>> not True
False
>>> not False
True
>>> not 5 > 2
False
布尔值经常用在条件判断中,比如:
if age >= 18:
print('adult')
else:
print('teenager')
空值是Python里一个特殊的值,用None表示。None不能理解为0,因为0是有意义的,而None是一个特殊的空值
Python内置的一种数据类型是列表:list。list是一种有序的集合,可以随时添加和删除其中的元素。
比如,列出班里所有同学的名字,就可以用一个list表示:
>>> classmates = ['Michael', 'Bob', 'Tracy']
>>> classmates
['Michael', 'Bob', 'Tracy']
变量classmates就是一个list。用len()函数可以获得list元素的个数:
>>> len(classmates)
3
用索引来访问list中每一个位置的元素,记得索引是从0开始的:
>>> classmates[0]
'Michael'
>>> classmates[3]
Traceback (most recent call last):
File "
IndexError: list index out of range
当索引超出了范围时,Python会报一个IndexError错误,所以,要确保索引不要越界,记得最后一个元素的索引是len(classmates) - 1。
如果要取最后一个元素,除了计算索引位置外,还可以用-1做索引,直接获取最后一个元素:
>>> classmates[-1]
'Tracy'
以此类推,可以获取倒数第2个、倒数第3个:
>>> classmates[-2]
'Bob'
>>> classmates[-3]
'Michael'
>>> classmates[-4]
Traceback (most recent call last):
File "
IndexError: list index out of range
当然,倒数第4个就越界了。
list是一个可变的有序表,所以,可以往list中追加元素到末尾:
>>> classmates.append('Adam')
>>> classmates
['Michael', 'Bob', 'Tracy', 'Adam']
也可以把元素插入到指定的位置,比如索引号为1的位置:
>>> classmates.insert(1, 'Jack')
>>> classmates
['Michael', 'Jack', 'Bob', 'Tracy', 'Adam']
要删除list末尾的元素,用pop()方法:
>>> classmates.pop()
'Adam'
>>> classmates
['Michael', 'Jack', 'Bob', 'Tracy']
要删除指定位置的元素,用pop(i)方法,其中i是索引位置:
>>> classmates.pop(1)
'Jack'
>>> classmates
['Michael', 'Bob', 'Tracy']
要把某个元素替换成别的元素,可以直接赋值给对应的索引位置:
>>> classmates[1] = 'Sarah'
>>> classmates
['Michael', 'Sarah', 'Tracy']
list里面的元素的数据类型也可以不同,比如:
>>> L = ['Apple', 123, True]
list元素也可以是另一个list,比如:
>>> s = ['python', 'java', ['asp', 'php'], 'scheme']
>>> len(s)
4
要注意s只有4个元素,其中s[2]又是一个list,如果拆开写就更容易理解了:
>>> p = ['asp', 'php']
>>> s = ['python', 'java', p, 'scheme']
要拿到'php'可以写p[1]或者s[2][1],因此s可以看成是一个二维数组,类似的还有三维、四维……数组,不过很少用到。
如果一个list中一个元素也没有,就是一个空的list,它的长度为0:
>>> L = []
>>> len(L)
0
另一种有序列表叫元组:tuple。tuple和list非常类似,但是tuple一旦初始化就不能修改,比如同样是列出同学的名字:
>>> classmates = ('Michael', 'Bob', 'Tracy')
现在,classmates这个tuple不能变了,它也没有append(),insert()这样的方法。其他获取元素的方法和list是一样的,你可以正常地使用classmates[0],classmates[-1],但不能赋值成另外的元素。
不可变的tuple有什么意义?因为tuple不可变,所以代码更安全。如果可能,能用tuple代替list就尽量用tuple。
tuple的陷阱:当你定义一个tuple时,在定义的时候,tuple的元素就必须被确定下来,比如:
>>> t = (1, 2)
>>> t
(1, 2)
如果要定义一个空的tuple,可以写成():
>>> t = ()
>>> t
()
但是,要定义一个只有1个元素的tuple,如果你这么定义:
>>> t = (1)
>>> t
1
定义的不是tuple,是1这个数!这是因为括号()既可以表示tuple,又可以表示数学公式中的小括号,这就产生了歧义。因此,Python规定,这种情况下,按小括号进行计算,计算结果自然是1。
所以,只有1个元素的tuple定义时必须加一个逗号,,来消除歧义:
>>> t = (1,)
>>> t
(1,)
Python在显示只有1个元素的tuple时,也会加一个逗号,,以免你误解成数学计算意义上的括号。
最后来看一个“可变的”tuple:
>>> t = ('a', 'b', ['A', 'B'])
>>> t[2][0] = 'X'
>>> t[2][1] = 'Y'
>>> t
('a', 'b', ['X', 'Y'])
这个tuple定义的时候有3个元素,分别是'a','b'和一个list。不是说tuple一旦定义后就不可变了吗?怎么后来又变了?
我们先看看定义的时候tuple包含的3个元素:
当我们把list的元素'A'和'B'修改为'X'和'Y'后,tuple变为:
表面上看,tuple的元素确实变了,但其实变的不是tuple的元素,而是list的元素。tuple一开始指向的list并没有改成别的list,所以,tuple所谓的“不变”是说,tuple的每个元素,指向永远不变。即指向'a',就不能改成指向'b',指向一个list,就不能改成指向其他对象,但指向的这个list本身是可变的!
理解了“指向不变”后,要创建一个内容也不变的tuple怎么做?那就必须保证tuple的每一个元素本身也不能变。
Python内置了字典:dict的支持,dict全称dictionary,在其他语言中也称为map,使用键-值(key-value)存储,具有极快的查找速度。
假设要根据同学的名字查找对应的成绩,如果用list实现,需要两个list:
>>> names = ['Michael', 'Bob', 'Tracy']
>>> scores = [95, 75, 85]
给定一个名字,要查找对应的成绩,就先要在names中找到对应的位置,再从scores取出对应的成绩,list越长,耗时越长。
如果用dict实现,只需要一个“名字”-“成绩”的对照表,直接根据名字查找成绩,无论这个表有多大,查找速度都不会变慢。
>>> d = {'Michael': 95, 'Bob': 75, 'Tracy': 85}
>>> d['Michael']
95
为什么dict查找速度这么快?因为dict的实现原理和查字典是一样的。假设字典包含了1万个汉字,我们要查某一个字,一个办法是把字典从第一页往后翻,直到找到我们想要的字为止,这种方法就是在list中查找元素的方法,list越大,查找越慢。
第二种方法是先在字典的索引表里(比如部首表)查这个字对应的页码,然后直接翻到该页,找到这个字。无论找哪个字,这种查找速度都非常快,不会随着字典大小的增加而变慢。
dict就是第二种实现方式,给定一个名字,比如'Michael',dict在内部就可以直接计算出Michael对应的存放成绩的“页码”,也就是95这个数字存放的内存地址,直接取出来,所以速度非常快。
你可以猜到,这种key-value存储方式,在放进去的时候,必须根据key算出value的存放位置,这样,取的时候,才能根据key直接拿到value。
把数据放入dict的方法,除了初始化时指定外,还可以通过key放入:
>>> d['Adam'] = 67
>>> d['Adam']
67
由于一个key只能对应一个value,所以,多次对一个key放入value,后面的值会把前面的值冲掉:
>>> d['Jack'] = 90
>>> d['Jack']
90
>>> d['Jack'] = 88
>>> d['Jack']
88
如果key不存在,dict就会报错:
>>> d['Thomas']
Traceback (most recent call last):
File "
KeyError: 'Thomas'
要避免key不存在的错误,有两种办法,一是通过in判断key是否存在:
>>> 'Thomas' in d
False
二是通过dict提供的get方法,如果key不存在,可以返回None,或者自己指定的value:
>>> d.get('Thomas')
>>> d.get('Thomas', -1)
-1
注意:返回None的时候Python的交互式命令行不显示结果。
要删除一个key,用pop(key)方法,对应的value也会从dict中删除:
>>> d.pop('Bob')
75
>>> d
{'Michael': 95, 'Tracy': 85}
请务必注意,dict内部存放的顺序和key放入的顺序是没有关系的。
和list比较,dict有以下几个特点:
查找和插入的速度极快,不会随着key的增加而变慢;
需要占用大量的内存,内存浪费多。
而list相反:
查找和插入的时间随着元素的增加而增加;
占用空间小,浪费内存很少。
所以,dict是用空间来换取时间的一种方法。
dict可用在需要高速查找的很多地方,正确使用dict需要牢记的第一条就是dict的key必须是不可变对象。
这是因为dict根据key来计算value的存储位置,如果每次计算相同的key得出的结果不同,那dict内部就完全混乱了。这个通过key计算位置的算法称为哈希算法(Hash)。
要保证hash的正确性,作为key的对象就不能变。在Python中,字符串、整数等都是不可变的,因此,可以放心地作为key。而list是可变的,就不能作为key。
set和dict类似,也是一组key的集合,但不存储value。由于key不能重复,所以,在set中,没有重复的key。
要创建一个set,需要提供一个list作为输入集合:
>>> s = set([1, 2, 3])
>>> s
{1, 2, 3}
注意,传入的参数[1, 2, 3]是一个list,而显示的{1, 2, 3}只是告诉你这个set内部有1,2,3这3个元素,显示的顺序也不表示set是有序的。
重复元素在set中自动被过滤:
>>> s = set([1, 1, 2, 2, 3, 3])
>>> s
{1, 2, 3}
通过add(key)方法可以添加元素到set中,可以重复添加,但不会有效果:
>>> s.add(4)
>>> s
{1, 2, 3, 4}
>>> s.add(4)
>>> s
{1, 2, 3, 4}
通过remove(key)方法可以删除元素:
>>> s.remove(4)
>>> s
{1, 2, 3}
set可以看成数学意义上的无序和无重复元素的集合,因此,两个set可以做数学意义上的交集、并集等操作:
>>> s1 = set([1, 2, 3])
>>> s2 = set([2, 3, 4])
>>> s1 & s2
{2, 3}
>>> s1 | s2
{1, 2, 3, 4}
set和dict的唯一区别仅在于没有存储对应的value,但是,set的原理和dict一样,所以,同样不可以放入可变对象,因为无法判断两个可变对象是否相等,也就无法保证set内部“不会有重复元素”。
在计算机程序中,变量不仅可以是数字,还可以是任意数据类型。
变量在程序中就是用一个变量名表示了,变量名必须是大小写英文、数字和_的组合,且不能用数字开头。
创建对象a = 'ABC'时,Python解释器干了两件事情:
在内存中创建了一个'ABC'的字符串。
在内存中创建了一个名为a的变量,并把它指向'ABC'。
也可以把一个变量a赋值给另一个变量b,这个操作实际上是把变量b指向变量a所指向的数据,例如下面的代码:
a = 'ABC'
b = a
a = 'XYZ'
print(b)
最后一行打印出变量b的内容到底是'ABC'呢还是'XYZ'?如果从数学意义上理解,就会错误地得出b和a相同,也应该是'XYZ',但实际上b的值是'ABC',让我们一行一行地执行代码,就可以看到到底发生了什么事:
执行a='ABC',解释器创建了字符串'ABC'和变量a,并把a指向'ABC':
执行b=a,解释器创建了变量b,并把b指向a指向的字符串'ABC':
执行a='XYZ',解释器创建了字符串'XYZ',并把a的指向改为'XYZ',但b并没有更改
所以,最后打印变量b的结果自然是'ABC'了。
对于可变类型的数据来说,赋值语句是在原内存地址上进行操作的。
对于不可变类型的数据来说,赋值语句是重新生成了一个内存地址,在新生成的内存地址上进行操作。
可变类型,值可以改变:
列表list
字典dict
不可变类型,值不可以改变:
数值类型int,long,bool,float
字符串str
元组tuple
对于可变对象,比如list,对list进行操作,list内部的内容是会变化的,比如:
>>> a = ['c', 'b', 'a']
>>> a.sort()
>>> a
['a', 'b', 'c']
而对于不可变对象,比如str,对str进行操作呢:
>>> a = 'abc'
>>> a.replace('a', 'A')
'Abc'
>>> a
'abc'
虽然字符串有个replace()方法,也确实变出了'Abc',但变量a最后仍是'abc',应该怎么理解呢?
我们先把代码改成下面这样:
>>> a = 'abc'
>>> b = a.replace('a', 'A')
>>> b
'Abc'
>>> a
'abc'
要始终牢记的是,a是变量,而'abc'才是字符串对象!有些时候,我们经常说,对象a的内容是'abc',但其实是指,a本身是一个变量,它指向的对象的内容才是'abc':
当我们调用a.replace('a', 'A')时,实际上调用方法replace是作用在字符串对象'abc'上的,而这个方法虽然名字叫replace,但却没有改变字符串'abc'的内容。相反,replace方法创建了一个新字符串'Abc'并返回,如果我们用变量b指向该新字符串,就容易理解了,变量a仍指向原有的字符串'abc',但变量b却指向新字符串'Abc'了:
所以,对于不变对象来说,调用对象自身的任意方法,也不会改变该对象自身的内容。相反,这些方法会创建新的对象并返回,这样,就保证了不可变对象本身永远是不可变的。
常量就是不能变的变量,比如常用的数学常数π就是一个常量。
在Python中,通常用全部大写的变量名表示常量:PI =3.14159265359。
但事实上PI仍然是一个变量,Python根本没有任何机制保证PI不会被改变,所以,用全部大写的变量名表示常量只是一个习惯上的用法,如果你一定要改变变量PI的值,也没人能拦住你。
最后解释一下整数的除法为什么也是精确的。在Python中,有两种除法,一种除法是/:
>>> 10 / 3
3.3333333333333335
/除法计算结果是浮点数,即使是两个整数恰好整除,结果也是浮点数:
>>> 9 / 3
3.0
还有一种除法是//,称为地板除,两个整数的除法仍然是整数:
>>> 10 // 3
3
整数的地板除//永远是整数,即使除不尽。要做精确的除法,使用/就可以。因为//除法只取结果的整数部分,所以Python还提供一个余数运算,可以得到两个整数相除的余数:
>>> 10 % 3
1
无论整数做//除法还是取余数,结果永远是整数,所以,整数运算结果永远是精确的。
小结
Python支持多种数据类型,在计算机内部,可以把任何数据都看成一个“对象”,而变量就是在程序中用来指向这些数据对象的,对变量赋值就是把数据和变量给关联起来。
注意:Python的整数没有大小限制,而某些语言的整数根据其存储长度是有大小限制的,例如Java对32位整数的范围限制在-2147483648-2147483647。
Python的浮点数也没有大小限制,但是超出一定范围就直接表示为inf(无限大)