flink DataStream API使用及原理

传统的大数据处理方式一般是批处理式的,也就是说,今天所收集的数据,我们明天再把今天收集到的数据算出来,以供大家使用,但是在很多情况下,数据的时效性对于业务的成败是非常关键的。

Spark 和 Flink 都是通用的开源大规模处理引擎,目标是在一个系统中支持所有的数据处理以带来效能的提升。两者都有相对比较成熟的生态系统。是下一代大数据引擎最有力的竞争者。

Spark 的生态总体更完善一些,在机器学习的集成和易用性上暂时领先。

Flink 在流计算上有明显优势,核心架构和模型也更透彻和灵活一些。

本文主要通过实例来分析flink的流式处理过程,并通过源码的方式来介绍流式处理的内部机制。

DataStream整体概述

flink DataStream API使用及原理_第1张图片

主要分5部分,下面我们来分别介绍:

 1.运行环境StreamExecutionEnvironment

StreamExecutionEnvironment是个抽象类,是流式处理的容器,实现类有两个,分别是

LocalStreamEnvironment:
RemoteStreamEnvironment:
/**
 * The StreamExecutionEnvironment is the context in which a streaming program is executed. A
 * {@link LocalStreamEnvironment} will cause execution in the current JVM, a
 * {@link RemoteStreamEnvironment} will cause execution on a remote setup.
 *
 * 

The environment provides methods to control the job execution (such as setting the parallelism * or the fault tolerance/checkpointing parameters) and to interact with the outside world (data access). * * @see org.apache.flink.streaming.api.environment.LocalStreamEnvironment * @see org.apache.flink.streaming.api.environment.RemoteStreamEnvironment */

2.数据源DataSource数据输入

包含了输入格式InputFormat

    /**
     * Creates a new data source.
     *
     * @param context The environment in which the data source gets executed.
     * @param inputFormat The input format that the data source executes.
     * @param type The type of the elements produced by this input format.
     */
    public DataSource(ExecutionEnvironment context, InputFormat inputFormat, TypeInformation type, String dataSourceLocationName) {
        super(context, type);

        this.dataSourceLocationName = dataSourceLocationName;

        if (inputFormat == null) {
            throw new IllegalArgumentException("The input format may not be null.");
        }

        this.inputFormat = inputFormat;

        if (inputFormat instanceof NonParallelInput) {
            this.parallelism = 1;
        }
    }

 flink将数据源主要分为内置数据源和第三方数据源,内置数据源有 文件,网络socket端口及集合类型数据;第三方数据源实用Connector的方式来连接如kafka Connector,es connector等,自己定义的话,可以实现SourceFunction,封装成Connector来做。

 flink DataStream API使用及原理_第2张图片

3.DataStream转换

DataStream:同一个类型的流元素,DataStream可以通过transformation转换成另外的DataStream,示例如下

@link DataStream#map

@link DataStream#filter

flink DataStream API使用及原理_第3张图片

 StreamOperator:流式算子的基本接口,三个实现类

AbstractStreamOperator:

OneInputStreamOperator:

TwoInputStreamOperator:

/**
 * Basic interface for stream operators. Implementers would implement one of
 * {@link org.apache.flink.streaming.api.operators.OneInputStreamOperator} or
 * {@link org.apache.flink.streaming.api.operators.TwoInputStreamOperator} to create operators
 * that process elements.
 *
 * 

The class {@link org.apache.flink.streaming.api.operators.AbstractStreamOperator} * offers default implementation for the lifecycle and properties methods. * *

Methods of {@code StreamOperator} are guaranteed not to be called concurrently. Also, if using * the timer service, timer callbacks are also guaranteed not to be called concurrently with * methods on {@code StreamOperator}. * * @param The output type of the operator */

 4.DataStreamSink输出

    /**
     * Adds the given sink to this DataStream. Only streams with sinks added
     * will be executed once the {@link StreamExecutionEnvironment#execute()}
     * method is called.
     *
     * @param sinkFunction
     *            The object containing the sink's invoke function.
     * @return The closed DataStream.
     */
    public DataStreamSink addSink(SinkFunction sinkFunction) {

        // read the output type of the input Transform to coax out errors about MissingTypeInfo
        transformation.getOutputType();

        // configure the type if needed
        if (sinkFunction instanceof InputTypeConfigurable) {
            ((InputTypeConfigurable) sinkFunction).setInputType(getType(), getExecutionConfig());
        }

        StreamSink sinkOperator = new StreamSink<>(clean(sinkFunction));

        DataStreamSink sink = new DataStreamSink<>(this, sinkOperator);

        getExecutionEnvironment().addOperator(sink.getTransformation());
        return sink;
    }

5.执行

/**
     * Executes the JobGraph of the on a mini cluster of ClusterUtil with a user
     * specified name.
     *
     * @param jobName
     *            name of the job
     * @return The result of the job execution, containing elapsed time and accumulators.
     */
    @Override
    public JobExecutionResult execute(String jobName) throws Exception {
        // transform the streaming program into a JobGraph
        StreamGraph streamGraph = getStreamGraph();
        streamGraph.setJobName(jobName);

        JobGraph jobGraph = streamGraph.getJobGraph();
        jobGraph.setAllowQueuedScheduling(true);

        Configuration configuration = new Configuration();
        configuration.addAll(jobGraph.getJobConfiguration());
        configuration.setString(TaskManagerOptions.MANAGED_MEMORY_SIZE, "0");

        // add (and override) the settings with what the user defined
        configuration.addAll(this.configuration);

        if (!configuration.contains(RestOptions.BIND_PORT)) {
            configuration.setString(RestOptions.BIND_PORT, "0");
        }

        int numSlotsPerTaskManager = configuration.getInteger(TaskManagerOptions.NUM_TASK_SLOTS, jobGraph.getMaximumParallelism());

        MiniClusterConfiguration cfg = new MiniClusterConfiguration.Builder()
            .setConfiguration(configuration)
            .setNumSlotsPerTaskManager(numSlotsPerTaskManager)
            .build();

        if (LOG.isInfoEnabled()) {
            LOG.info("Running job on local embedded Flink mini cluster");
        }

        MiniCluster miniCluster = new MiniCluster(cfg);

        try {
            miniCluster.start();
            configuration.setInteger(RestOptions.PORT, miniCluster.getRestAddress().get().getPort());

            return miniCluster.executeJobBlocking(jobGraph);
        }
        finally {
            transformations.clear();
            miniCluster.close();
        }
    }

6.总结

  Flink的执行方式类似于管道,它借鉴了数据库的一些执行原理,实现了自己独特的执行方式。

7.展望

Stream涉及的内容还包括Watermark,window等概念,因篇幅限制,这篇仅介绍flink DataStream API使用及原理。

下篇将介绍Watermark,下下篇是windows窗口计算。

参考资料

【1】https://baijiahao.baidu.com/s?id=1625545704285534730&wfr=spider&for=pc

【2】https://blog.51cto.com/13654660/2087705

你可能感兴趣的:(flink DataStream API使用及原理)