Golang的主要 设计目标之一就是面向大规模后端服务程序,网络通信这块是服务端 程序必不可少也是至关重要的一部分。在日常应用中,我们也可以看到Go中的net以及其subdirectories下的包均是“高频+刚需”,而TCP socket则是网络编程的主流,即便您没有直接使用到net中有关TCP Socket方面的接口,但net/http总是用到了吧,http底层依旧是用tcp socket实现的。
网络编程方面,我们最常用的就是tcp socket编程了,在posix标准出来后,socket在各大主流OS平台上都得到了很好的支持。关于tcp programming,最好的资料莫过于W. Richard Stevens 的网络编程圣经《UNIX网络 编程 卷1:套接字联网API》 了,书中关于tcp socket接口的各种使用、行为模式、异常处理讲解的十分细致。Go是自带runtime的跨平台编程语言,Go中暴露给语言使用者的tcp socket api是建立OS原生tcp socket接口之上的。由于Go runtime调度的需要,golang tcp socket接口在行为特点与异常处理方面与OS原生接口有着一些差别。这篇博文的目标就是整理出关于Go tcp socket在各个场景下的使用方法、行为特点以及注意事项。
从tcp socket诞生后,网络编程架构模型也几经演化,大致是:“每进程一个连接” –> “每线程一个连接” –> “Non-Block + I/O多路复用(linux epoll/windows iocp/freebsd darwin kqueue/solaris Event Port)”。伴随着模型的演化,服务程序愈加强大,可以支持更多的连接,获得更好的处理性能。
目前主流web server一般均采用的都是”Non-Block + I/O多路复用”(有的也结合了多线程、多进程)。不过I/O多路复用也给使用者带来了不小的复杂度,以至于后续出现了许多高性能的I/O多路复用框架, 比如libevent、libev、libuv等,以帮助开发者简化开发复杂性,降低心智负担。不过Go的设计者似乎认为I/O多路复用的这种通过回调机制割裂控制流 的方式依旧复杂,且有悖于“一般逻辑”设计,为此Go语言将该“复杂性”隐藏在Runtime中了:Go开发者无需关注socket是否是 non-block的,也无需亲自注册文件描述符的回调,只需在每个连接对应的goroutine中以“block I/O”的方式对待socket处理即可,这可以说大大降低了开发人员的心智负担。一个典型的Go server端程序大致如下:
//go-tcpsock/server.go
func handleConn(c net.Conn) {
defer c.Close()
for {
// read from the connection
// ... ...
// write to the connection
//... ...
}
}
func main() {
l, err := net.Listen("tcp", ":8888")
if err != nil {
fmt.Println("listen error:", err)
return
}
for {
c, err := l.Accept()
if err != nil {
fmt.Println("accept error:", err)
break
}
// start a new goroutine to handle
// the new connection.
go handleConn(c)
}
}
用户层眼中看到的goroutine中的“block socket”,实际上是通过Go runtime中的netpoller通过Non-block socket + I/O多路复用机制“模拟”出来的,真实的underlying socket实际上是non-block的,只是runtime拦截了底层socket系统调用的错误码,并通过netpoller和goroutine 调度让goroutine“阻塞”在用户层得到的Socket fd上。比如:当用户层针对某个socket fd发起read操作时,如果该socket fd中尚无数据,那么runtime会将该socket fd加入到netpoller中监听,同时对应的goroutine被挂起,直到runtime收到socket fd 数据ready的通知,runtime才会重新唤醒等待在该socket fd上准备read的那个Goroutine。而这个过程从Goroutine的视角来看,就像是read操作一直block在那个socket fd上似的。具体实现细节在后续场景中会有补充描述。
众所周知,TCP Socket的连接的建立需要经历客户端和服务端的三次握手的过程。连接建立过程中,服务端是一个标准的Listen + Accept的结构(可参考上面的代码),而在客户端Go语言使用net.Dial或DialTimeout进行连接建立:
阻塞Dial:
conn, err := net.Dial("tcp", "google.com:80")
if err != nil {
//handle error
}
// read or write on conn
或是带上超时机制的Dial:
conn, err := net.DialTimeout("tcp", ":8080", 2 * time.Second)
if err != nil {
//handle error
}
// read or write on conn
对于客户端而言,连接的建立会遇到如下几种情形:
如果传给Dial的Addr是可以立即判断出网络不可达,或者Addr中端口对应的服务没有启动,端口未被监听,Dial会几乎立即返回错误,比如:
//go-tcpsock/conn_establish/client1.go
... ...
func main() {
log.Println("begin dial...")
conn, err := net.Dial("tcp", ":8888")
if err != nil {
log.Println("dial error:", err)
return
}
defer conn.Close()
log.Println("dial ok")
}
如果本机8888端口未有服务程序监听,那么执行上面程序,Dial会很快返回错误:
$go run client1.go
2015/11/16 14:37:41 begin dial...
2015/11/16 14:37:41 dial error: dial tcp :8888: getsockopt: connection refused
还有一种场景就是对方服务器很忙,瞬间有大量client端连接尝试向server建立,server端的listen backlog队列满,server accept不及时((即便不accept,那么在backlog数量范畴里面,connect都会是成功的,因为new conn已经加入到server side的listen queue中了,accept只是从queue中取出一个conn而已),这将导致client端Dial阻塞。我们还是通过例子感受Dial的行为特点:
服务端代码:
//go-tcpsock/conn_establish/server2.go
... ...
func main() {
l, err := net.Listen("tcp", ":8888")
if err != nil {
log.Println("error listen:", err)
return
}
defer l.Close()
log.Println("listen ok")
var i int
for {
time.Sleep(time.Second * 10)
if _, err := l.Accept(); err != nil {
log.Println("accept error:", err)
break
}
i++
log.Printf("%d: accept a new connection\n", i)
}
}
客户端代码:
//go-tcpsock/conn_establish/client2.go
... ...
func establishConn(i int) net.Conn {
conn, err := net.Dial("tcp", ":8888")
if err != nil {
log.Printf("%d: dial error: %s", i, err)
return nil
}
log.Println(i, ":connect to server ok")
return conn
}
func main() {
var sl []net.Conn
for i := 1; i < 1000; i++ {
conn := establishConn(i)
if conn != nil {
sl = append(sl, conn)
}
}
time.Sleep(time.Second * 10000)
}
从程序可以看出,服务端在listen成功后,每隔10s钟accept一次。客户端则是串行的尝试建立连接。这两个程序在Darwin下的执行 结果:
$go run server2.go
2015/11/16 21:55:41 listen ok
2015/11/16 21:55:51 1: accept a new connection
2015/11/16 21:56:01 2: accept a new connection
... ...
$go run client2.go
2015/11/16 21:55:44 1 :connect to server ok
2015/11/16 21:55:44 2 :connect to server ok
2015/11/16 21:55:44 3 :connect to server ok
... ...
2015/11/16 21:55:44 126 :connect to server ok
2015/11/16 21:55:44 127 :connect to server ok
2015/11/16 21:55:44 128 :connect to server ok
2015/11/16 21:55:52 129 :connect to server ok
2015/11/16 21:56:03 130 :connect to server ok
2015/11/16 21:56:14 131 :connect to server ok
... ...
可以看出Client初始时成功地一次性建立了128个连接,然后后续每阻塞近10s才能成功建立一条连接。也就是说在server端 backlog满时(未及时accept),客户端将阻塞在Dial上,直到server端进行一次accept。至于为什么是128,这与darwin 下的默认设置有关:
$sysctl -a|grep kern.ipc.somaxconn
kern.ipc.somaxconn: 128
如果我在ubuntu 14.04上运行上述server程序,我们的client端初始可以成功建立499条连接。
如果server一直不accept,client端会一直阻塞么?我们去掉accept后的结果是:在Darwin下,client端会阻塞大 约1分多钟才会返回timeout:
2015/11/16 22:03:31 128 :connect to server ok
2015/11/16 22:04:48 129: dial error: dial tcp :8888: getsockopt: operation timed out
而如果server运行在ubuntu 14.04上,client似乎一直阻塞,我等了10多分钟依旧没有返回。 阻塞与否看来与server端的网络实现和设置有关。
如果网络延迟较大,TCP握手过程将更加艰难坎坷(各种丢包),时间消耗的自然也会更长。Dial这时会阻塞,如果长时间依旧无法建立连接,则Dial也会返回“ getsockopt: operation timed out”错误。
在连接建立阶段,多数情况下,Dial是可以满足需求的,即便阻塞一小会儿。但对于某些程序而言,需要有严格的连接时间限定,如果一定时间内没能成功建立连接,程序可能会需要执行一段“异常”处理逻辑,为此我们就需要DialTimeout了。下面的例子将Dial的最长阻塞时间限制在2s内,超出这个时长,Dial将返回timeout error:
//go-tcpsock/conn_establish/client3.go
... ...
func main() {
log.Println("begin dial...")
conn, err := net.DialTimeout("tcp", "104.236.176.96:80", 2*time.Second)
if err != nil {
log.Println("dial error:", err)
return
}
defer conn.Close()
log.Println("dial ok")
}
执行结果如下(需要模拟一个延迟较大的网络环境):
$go run client3.go
2015/11/17 09:28:34 begin dial...
2015/11/17 09:28:36 dial error: dial tcp 104.236.176.96:80: i/o timeout
连接建立起来后,我们就要在conn上进行读写,以完成业务逻辑。前面说过Go runtime隐藏了I/O多路复用的复杂性。语言使用者只需采用goroutine+Block I/O的模式即可满足大部分场景需求。Dial成功后,方法返回一个net.Conn接口类型变量值,这个接口变量的动态类型为一个*TCPConn:
//$GOROOT/src/net/tcpsock_posix.go
type TCPConn struct {
conn
}
TCPConn内嵌了一个unexported类型:conn,因此TCPConn”继承”了conn的Read和Write方法,后续通过Dial返回值调用的Write和Read方法均是net.conn的方法:
//$GOROOT/src/net/net.go
type conn struct {
fd *netFD
}
func (c *conn) ok() bool { return c != nil && c.fd != nil }
// Implementation of the Conn interface.
// Read implements the Conn Read method.
func (c *conn) Read(b []byte) (int, error) {
if !c.ok() {
return 0, syscall.EINVAL
}
n, err := c.fd.Read(b)
if err != nil && err != io.EOF {
err = &OpError{Op: "read", Net: c.fd.net, Source: c.fd.laddr, Addr: c.fd.raddr, Err: err}
}
return n, err
}
// Write implements the Conn Write method.
func (c *conn) Write(b []byte) (int, error) {
if !c.ok() {
return 0, syscall.EINVAL
}
n, err := c.fd.Write(b)
if err != nil {
err = &OpError{Op: "write", Net: c.fd.net, Source: c.fd.laddr, Addr: c.fd.raddr, Err: err}
}
return n, err
}
下面我们先来通过几个场景来总结一下conn.Read的行为特点。
连接建立后,如果对方未发送数据到socket,接收方(Server)会阻塞在Read操作上,这和前面提到的“模型”原理是一致的。执行该Read操作的goroutine也会被挂起。runtime会监视该socket,直到其有数据才会重新
调度该socket对应的Goroutine完成read。由于篇幅原因,这里就不列代码了,例子对应的代码文件:go-tcpsock/read_write下的client1.go和server1.go。
如果socket中有部分数据,且长度小于一次Read操作所期望读出的数据长度,那么Read将会成功读出这部分数据并返回,而不是等待所有期望数据全部读取后再返回。
Client端:
//go-tcpsock/read_write/client2.go
... ...
func main() {
if len(os.Args) <= 1 {
fmt.Println("usage: go run client2.go YOUR_CONTENT")
return
}
log.Println("begin dial...")
conn, err := net.Dial("tcp", ":8888")
if err != nil {
log.Println("dial error:", err)
return
}
defer conn.Close()
log.Println("dial ok")
time.Sleep(time.Second * 2)
data := os.Args[1]
conn.Write([]byte(data))
time.Sleep(time.Second * 10000)
}
Server端:
//go-tcpsock/read_write/server2.go
... ...
func handleConn(c net.Conn) {
defer c.Close()
for {
// read from the connection
var buf = make([]byte, 10)
log.Println("start to read from conn")
n, err := c.Read(buf)
if err != nil {
log.Println("conn read error:", err)
return
}
log.Printf("read %d bytes, content is %s\n", n, string(buf[:n]))
}
}
... ...
我们通过client2.go发送”hi”到Server端:
运行结果:
$go run client2.go hi
2015/11/17 13:30:53 begin dial...
2015/11/17 13:30:53 dial ok
$go run server2.go
2015/11/17 13:33:45 accept a new connection
2015/11/17 13:33:45 start to read from conn
2015/11/17 13:33:47 read 2 bytes, content is hi
...
Client向socket中写入两个字节数据(“hi”),Server端创建一个len = 10的slice,等待Read将读取的数据放入slice;Server随后读取到那两个字节:”hi”。Read成功返回,n =2 ,err = nil。
如果socket中有数据,且长度大于等于一次Read操作所期望读出的数据长度,那么Read将会成功读出这部分数据并返回。这个情景是最符合我们对Read的期待的了:Read将用Socket中的数据将我们传入的slice填满后返回:n = 10, err = nil。
我们通过client2.go向Server2发送如下内容:abcdefghij12345,执行结果如下:
$go run client2.go abcdefghij12345
2015/11/17 13:38:00 begin dial...
2015/11/17 13:38:00 dial ok
$go run server2.go
2015/11/17 13:38:00 accept a new connection
2015/11/17 13:38:00 start to read from conn
2015/11/17 13:38:02 read 10 bytes, content is abcdefghij
2015/11/17 13:38:02 start to read from conn
2015/11/17 13:38:02 read 5 bytes, content is 12345
client端发送的内容长度为15个字节,Server端Read buffer的长度为10,因此Server Read第一次返回时只会读取10个字节;Socket中还剩余5个字节数据,Server再次Read时会把剩余数据读出(如:情形2)。
如果client端主动关闭了socket,那么Server的Read将会读到什么呢?这里分为“有数据关闭”和“无数据关闭”。
“有数据关闭”是指在client关闭时,socket中还有server端未读取的数据,我们在go-tcpsock/read_write/client3.go和server3.go中模拟这种情况:
$go run client3.go hello
2015/11/17 13:50:57 begin dial...
2015/11/17 13:50:57 dial ok
$go run server3.go
2015/11/17 13:50:57 accept a new connection
2015/11/17 13:51:07 start to read from conn
2015/11/17 13:51:07 read 5 bytes, content is hello
2015/11/17 13:51:17 start to read from conn
2015/11/17 13:51:17 conn read error: EOF
从输出结果来看,当client端close socket退出后,server3依旧没有开始Read,10s后第一次Read成功读出了5个字节的数据,当第二次Read时,由于client端 socket关闭,Read返回EOF error。
通过上面这个例子,我们也可以猜测出“无数据关闭”情形下的结果,那就是Read直接返回EOF error。
有些场合对Read的阻塞时间有严格限制,在这种情况下,Read的行为到底是什么样的呢?在返回超时错误时,是否也同时Read了一部分数据了呢?这个实验比较难于模拟,下面的测试结果也未必能反映出所有可能结果。我们编写了client4.go和server4.go来模拟这一情形。
//go-tcpsock/read_write/client4.go
... ...
func main() {
log.Println("begin dial...")
conn, err := net.Dial("tcp", ":8888")
if err != nil {
log.Println("dial error:", err)
return
}
defer conn.Close()
log.Println("dial ok")
data := make([]byte, 65536)
conn.Write(data)
time.Sleep(time.Second * 10000)
}
//go-tcpsock/read_write/server4.go
... ...
func handleConn(c net.Conn) {
defer c.Close()
for {
// read from the connection
time.Sleep(10 * time.Second)
var buf = make([]byte, 65536)
log.Println("start to read from conn")
c.SetReadDeadline(time.Now().Add(time.Microsecond * 10))
n, err := c.Read(buf)
if err != nil {
log.Printf("conn read %d bytes, error: %s", n, err)
if nerr, ok := err.(net.Error); ok && nerr.Timeout() {
continue
}
return
}
log.Printf("read %d bytes, content is %s\n", n, string(buf[:n]))
}
}
在Server端我们通过Conn的SetReadDeadline方法设置了10微秒的读超时时间,Server的执行结果如下:
$go run server4.go
2015/11/17 14:21:17 accept a new connection
2015/11/17 14:21:27 start to read from conn
2015/11/17 14:21:27 conn read 0 bytes, error: read tcp 127.0.0.1:8888->127.0.0.1:60970: i/o timeout
2015/11/17 14:21:37 start to read from conn
2015/11/17 14:21:37 read 65536 bytes, content is
虽然每次都是10微秒超时,但结果不同,第一次Read超时,读出数据长度为0;第二次读取所有数据成功,没有超时。反复执行了多次,没能出现“读出部分数据且返回超时错误”的情况。
和读相比,Write遇到的情形一样不少,我们也逐一看一下。
前面例子着重于Read,client端在Write时并未判断Write的返回值。所谓“成功写”指的就是Write调用返回的n与预期要写入的数据长度相等,且error = nil。这是我们在调用Write时遇到的最常见的情形,这里不再举例了。
TCP连接通信两端的OS都会为该连接保留数据缓冲,一端调用Write后,实际上数据是写入到OS的协议栈的数据缓冲的。TCP是全双工通信,因此每个方向都有独立的数据缓冲。当发送方将对方的接收缓冲区以及自身的发送缓冲区写满后,Write就会阻塞。我们来看一个例子:client5.go和server.go。
//go-tcpsock/read_write/client5.go
... ...
func main() {
log.Println("begin dial...")
conn, err := net.Dial("tcp", ":8888")
if err != nil {
log.Println("dial error:", err)
return
}
defer conn.Close()
log.Println("dial ok")
data := make([]byte, 65536)
var total int
for {
n, err := conn.Write(data)
if err != nil {
total += n
log.Printf("write %d bytes, error:%s\n", n, err)
break
}
total += n
log.Printf("write %d bytes this time, %d bytes in total\n", n, total)
}
log.Printf("write %d bytes in total\n", total)
time.Sleep(time.Second * 10000)
}
//go-tcpsock/read_write/server5.go
... ...
func handleConn(c net.Conn) {
defer c.Close()
time.Sleep(time.Second * 10)
for {
// read from the connection
time.Sleep(5 * time.Second)
var buf = make([]byte, 60000)
log.Println("start to read from conn")
n, err := c.Read(buf)
if err != nil {
log.Printf("conn read %d bytes, error: %s", n, err)
if nerr, ok := err.(net.Error); ok && nerr.Timeout() {
continue
}
}
log.Printf("read %d bytes, content is %s\n", n, string(buf[:n]))
}
}
... ...
Server5在前10s中并不Read数据,因此当client5一直尝试写入时,写到一定量后就会发生阻塞:
$go run client5.go
2015/11/17 14:57:33 begin dial...
2015/11/17 14:57:33 dial ok
2015/11/17 14:57:33 write 65536 bytes this time, 65536 bytes in total
2015/11/17 14:57:33 write 65536 bytes this time, 131072 bytes in total
2015/11/17 14:57:33 write 65536 bytes this time, 196608 bytes in total
2015/11/17 14:57:33 write 65536 bytes this time, 262144 bytes in total
2015/11/17 14:57:33 write 65536 bytes this time, 327680 bytes in total
2015/11/17 14:57:33 write 65536 bytes this time, 393216 bytes in total
2015/11/17 14:57:33 write 65536 bytes this time, 458752 bytes in total
2015/11/17 14:57:33 write 65536 bytes this time, 524288 bytes in total
2015/11/17 14:57:33 write 65536 bytes this time, 589824 bytes in total
2015/11/17 14:57:33 write 65536 bytes this time, 655360 bytes in total
在Darwin上,这个size大约在679468bytes。后续当server5每隔5s进行Read时,OS socket缓冲区腾出了空间,client5就又可以写入了:
$go run server5.go
2015/11/17 15:07:01 accept a new connection
2015/11/17 15:07:16 start to read from conn
2015/11/17 15:07:16 read 60000 bytes, content is
2015/11/17 15:07:21 start to read from conn
2015/11/17 15:07:21 read 60000 bytes, content is
2015/11/17 15:07:26 start to read from conn
2015/11/17 15:07:26 read 60000 bytes, content is
....
client端:
2015/11/17 15:07:01 write 65536 bytes this time, 720896 bytes in total
2015/11/17 15:07:06 write 65536 bytes this time, 786432 bytes in total
2015/11/17 15:07:16 write 65536 bytes this time, 851968 bytes in total
2015/11/17 15:07:16 write 65536 bytes this time, 917504 bytes in total
2015/11/17 15:07:27 write 65536 bytes this time, 983040 bytes in total
2015/11/17 15:07:27 write 65536 bytes this time, 1048576 bytes in total
.... ...
Write操作存在写入部分数据的情况,比如上面例子中,当client端输出日志停留在“write 65536 bytes this time, 655360 bytes in total”时,我们杀掉server5,这时我们会看到client5输出以下日志:
...
2015/11/17 15:19:14 write 65536 bytes this time, 655360 bytes in total
2015/11/17 15:19:16 write 24108 bytes, error:write tcp 127.0.0.1:62245->127.0.0.1:8888: write: broken pipe
2015/11/17 15:19:16 write 679468 bytes in total
显然Write并非在655360这个地方阻塞的,而是后续又写入24108后发生了阻塞,server端socket关闭后,我们看到Wrote返回er != nil且n = 24108,程序需要对这部分写入的24108字节做特定处理。
如果非要给Write增加一个期限,那我们可以调用SetWriteDeadline方法。我们copy一份client5.go,形成client6.go,在client6.go的Write之前增加一行timeout设置代码:
conn.SetWriteDeadline(time.Now().Add(time.Microsecond * 10))
启动server6.go,启动client6.go,我们可以看到写入超时的情况下,Write的返回结果:
$go run client6.go
2015/11/17 15:26:34 begin dial...
2015/11/17 15:26:34 dial ok
2015/11/17 15:26:34 write 65536 bytes this time, 65536 bytes in total
... ...
2015/11/17 15:26:34 write 65536 bytes this time, 655360 bytes in total
2015/11/17 15:26:34 write 24108 bytes, error:write tcp 127.0.0.1:62325->127.0.0.1:8888: i/o timeout
2015/11/17 15:26:34 write 679468 bytes in total
可以看到在写入超时时,依旧存在部分数据写入的情况。
综上例子,虽然Go给我们提供了阻塞I/O的便利,但在调用Read和Write时依旧要综合需要方法返回的n和err的结果,以做出正确处理。net.conn实现了io.Reader和io.Writer接口,因此可以试用一些wrapper包进行socket读写,比如bufio包下面的Writer和Reader、io/ioutil下的函数等。
基于goroutine的网络架构模型,存在在不同goroutine间共享conn的情况,那么conn的读写是否是goroutine safe的呢?在深入这个问题之前,我们先从应用意义上来看read操作和write操作的goroutine-safe必要性。
对于read操作而言,由于TCP是面向字节流,conn.Read无法正确区分数据的业务边界,因此多个goroutine对同一个conn进行read的意义不大,goroutine读到不完整的业务包反倒是增加了业务处理的难度。对与Write操作而言,倒是有多个goroutine并发写的情况。不过conn读写是否goroutine-safe的测试不是很好做,我们先深入一下runtime代码,先从理论上给这个问题定个性:
net.conn只是*netFD的wrapper结构,最终Write和Read都会落在其中的fd上:
type conn struct {
fd *netFD
}
netFD在不同平台上有着不同的实现,我们以net/fd_unix.go中的netFD为例:
// Network file descriptor.
type netFD struct {
// locking/lifetime of sysfd + serialize access to Read and Write methods
fdmu fdMutex
// immutable until Close
sysfd int
family int
sotype int
isConnected bool
net string
laddr Addr
raddr Addr
// wait server
pd pollDesc
}
我们看到netFD中包含了一个runtime实现的fdMutex类型字段,从注释上来看,该fdMutex用来串行化对该netFD对应的sysfd的Write和Read操作。从这个注释上来看,所有对conn的Read和Write操作都是有fdMutex互斥的,从netFD的Read和Write方法的实现也证实了这一点:
func (fd *netFD) Read(p []byte) (n int, err error) {
if err := fd.readLock(); err != nil {
return 0, err
}
defer fd.readUnlock()
if err := fd.pd.PrepareRead(); err != nil {
return 0, err
}
for {
n, err = syscall.Read(fd.sysfd, p)
if err != nil {
n = 0
if err == syscall.EAGAIN {
if err = fd.pd.WaitRead(); err == nil {
continue
}
}
}
err = fd.eofError(n, err)
break
}
if _, ok := err.(syscall.Errno); ok {
err = os.NewSyscallError("read", err)
}
return
}
func (fd *netFD) Write(p []byte) (nn int, err error) {
if err := fd.writeLock(); err != nil {
return 0, err
}
defer fd.writeUnlock()
if err := fd.pd.PrepareWrite(); err != nil {
return 0, err
}
for {
var n int
n, err = syscall.Write(fd.sysfd, p[nn:])
if n > 0 {
nn += n
}
if nn == len(p) {
break
}
if err == syscall.EAGAIN {
if err = fd.pd.WaitWrite(); err == nil {
continue
}
}
if err != nil {
break
}
if n == 0 {
err = io.ErrUnexpectedEOF
break
}
}
if _, ok := err.(syscall.Errno); ok {
err = os.NewSyscallError("write", err)
}
return nn, err
}
每次Write操作都是受lock保护,直到此次数据全部write完。因此在应用层面,要想保证多个goroutine在一个conn上write操作的Safe,需要一次write完整写入一个“业务包”;一旦将业务包的写入拆分为多次write,那就无法保证某个Goroutine的某“业务包”数据在conn发送的连续性。
同时也可以看出即便是Read操作,也是lock保护的。多个Goroutine对同一conn的并发读不会出现读出内容重叠的情况,但内容断点是依 runtime调度来随机确定的。存在一个业务包数据,1/3内容被goroutine-1读走,另外2/3被另外一个goroutine-2读 走的情况。比如一个完整包:world,当goroutine的read slice size < 5时,存在可能:一个goroutine读到 “worl”,另外一个goroutine读出”d”。
原生Socket API提供了丰富的sockopt设置接口,但Golang有自己的网络架构模型,golang提供的socket options接口也是基于上述模型的必要的属性设置。包括
不过上面的Method是TCPConn的,而不是Conn的,要使用上面的Method的,需要type assertion:
tcpConn, ok := c.(*TCPConn)
if !ok {
//error handle
}
tcpConn.SetNoDelay(true)
对于listener socket, golang默认采用了 SO_REUSEADDR,这样当你重启 listener程序时,不会因为address in use的错误而启动失败。而listen backlog的默认值是通过获取系统的设置值得到的。不同系统不同:mac 128, linux 512等。
和前面的方法相比,关闭连接算是最简单的操作了。由于socket是全双工的,client和server端在己方已关闭的socket和对方关闭的socket上操作的结果有不同。看下面例子:
//go-tcpsock/conn_close/client1.go
... ...
func main() {
log.Println("begin dial...")
conn, err := net.Dial("tcp", ":8888")
if err != nil {
log.Println("dial error:", err)
return
}
conn.Close()
log.Println("close ok")
var buf = make([]byte, 32)
n, err := conn.Read(buf)
if err != nil {
log.Println("read error:", err)
} else {
log.Printf("read % bytes, content is %s\n", n, string(buf[:n]))
}
n, err = conn.Write(buf)
if err != nil {
log.Println("write error:", err)
} else {
log.Printf("write % bytes, content is %s\n", n, string(buf[:n]))
}
time.Sleep(time.Second * 1000)
}
//go-tcpsock/conn_close/server1.go
... ...
func handleConn(c net.Conn) {
defer c.Close()
// read from the connection
var buf = make([]byte, 10)
log.Println("start to read from conn")
n, err := c.Read(buf)
if err != nil {
log.Println("conn read error:", err)
} else {
log.Printf("read %d bytes, content is %s\n", n, string(buf[:n]))
}
n, err = c.Write(buf)
if err != nil {
log.Println("conn write error:", err)
} else {
log.Printf("write %d bytes, content is %s\n", n, string(buf[:n]))
}
}
... ...
上述例子的执行结果如下:
$go run server1.go
2015/11/17 17:00:51 accept a new connection
2015/11/17 17:00:51 start to read from conn
2015/11/17 17:00:51 conn read error: EOF
2015/11/17 17:00:51 write 10 bytes, content is
$go run client1.go
2015/11/17 17:00:51 begin dial...
2015/11/17 17:00:51 close ok
2015/11/17 17:00:51 read error: read tcp 127.0.0.1:64195->127.0.0.1:8888: use of closed network connection
2015/11/17 17:00:51 write error: write tcp 127.0.0.1:64195->127.0.0.1:8888: use of closed network connection
从client1的结果来看,在己方已经关闭的socket上再进行read和write操作,会得到”use of closed network connection” error;
从server1的执行结果来看,在对方关闭的socket上执行read操作会得到EOF error,但write操作会成功,因为数据会成功写入己方的内核socket缓冲区中,即便最终发不到对方socket缓冲区了,因为己方socket并未关闭。因此当发现对方socket关闭后,己方应该正确合理处理自己的socket,再继续write已经无任何意义了。
本文比较基础,但却很重要,毕竟golang是面向大规模服务后端的,对通信环节的细节的深入理解会大有裨益。另外Go的goroutine+阻塞通信的网络通信模型降低了开发者心智负担,简化了通信的复杂性,这点尤为重要。