C语言——求两个数的最大公约数和最小公倍数

求两个数的最大公约数的常用方法:

※“辗转相除法”,又名欧几里得算法。基本方法如下:

设两数为a和b(a>b),用a除以b,得a÷b=q......r,若r=0 ,则最大公约数为b;若r≠0 ,则再用b÷r,得b÷r=q......r',若r'=0,则最大公约数为r',若r'≠0,则继续用r÷r'......直到能够整除为止,此时的除数即为最大公约数。

例如:a=99,b=18。a÷b=99÷18=5......9不能整除,则继续b÷r=18÷9=2可以整除,则此时的除数9即为a和b两数的最大公约数。

①代码如下:

#include 
int main()
{
	int a = 0;
	int b = 0;
	int t = 0;
	scanf("%d%d", &a, &b);//99,18
	while (a%b != 0){
		t = a%b;
		a = b;
		b = t;
	}
	printf("最大公约数为:%d\n", b);
	return 0;
}

首先,从键盘键入两个数a和b的值,变量t来保存余数。用while循环来判断能否整除,根据“辗转相除法”,先用第一个数a÷b再将除数b赋给a,余数赋给b,循环往复,直到能整除时结束循环,此时的除数b即为最大公约数。

(特别说明:若ab的条件了,在继续根据辗转相除的方法即可得到最大公约数。)


※拓展:求两个数的最小公倍数

关于最小公倍数与最大公约数,有这样的定理:最小公倍数×最大公约数=两数的乘积。

即:最小公倍数=两数的乘积÷最大公约数

②代码如下:

#include 
int main()
{
	int a = 0;
	int b = 0;
	int t = 0;
	scanf("%d%d", &a, &b);//18 99
	int m = a;
	int n = b;
	while (a%b != 0){
		t = a%b;//余数 9
		a = b;//18
		b = t;//9
	}
	printf("最大公约数为:%d\n", b);//9
	printf("最小公倍数为:%d\n",m*n/b);
	return 0;
}

首先,从键盘键入两个数a和b的值,变量t来保存余数。再设两个变量m、n来保存a、b的原值。

先根据辗转相除法求出最大公约数b'(过程同①),再由最小公倍数=两数的乘积÷最大公约数=m×n÷b'求得最小公倍数。







你可能感兴趣的:(C)