学习pandas下的dataframe画图参数

学习pandas数据框的绘图,轻松搞定各种图画法。

DataFrame.plot(x=Noney=Nonekind='line'ax=Nonesubplots=Falsesharex=Nonesharey=Falselayout=None,figsize=Noneuse_index=Truetitle=Nonegrid=Nonelegend=Truestyle=Nonelogx=Falselogy=False,loglog=Falsexticks=Noneyticks=Nonexlim=Noneylim=Nonerot=Nonefontsize=Nonecolormap=None,table=Falseyerr=Nonexerr=Nonesecondary_y=Falsesort_columns=False**kwds)

Parameters:

data : DataFrame

x : label or position, default None#指数据框列的标签或位置参数

y : label or position, default None

Allows plotting of one column versus another

kind : str

  • ‘line’ : line plot (default)#折线图
  • ‘bar’ : vertical bar plot#条形图
  • ‘barh’ : horizontal bar plot#横向条形图
  • ‘hist’ : histogram#柱状图
  • ‘box’ : boxplot#箱线图
  • ‘kde’ : Kernel Density Estimation plot#Kernel 的密度估计图,主要对柱状图添加Kernel 概率密度线
  • ‘density’ : same as ‘kde’
  • ‘area’ : area plot#不了解此图
  • ‘pie’ : pie plot#饼图
  • ‘scatter’ : scatter plot#散点图
  • ‘hexbin’ : hexbin plot#不了解此图

ax : matplotlib axes object, default None#一个图片切成不同片段,子图对象

subplots : boolean, default False#判断图片中是否有子图

Make separate subplots for each column

sharex : boolean, default True if ax is None else False#如果有子图,子图共x轴刻度,标签

In case subplots=True, share x axis and set some x axis labels to invisible; defaults to True if ax is None otherwise False if an ax is passed in; Be aware, that passing in both an ax and sharex=True will alter all x axis labels for all axis in a figure!

sharey : boolean, default False#如果有子图,子图共y轴刻度,标签

In case subplots=True, share y axis and set some y axis labels to invisible

layout : tuple (optional)#子图的行列布局

(rows, columns) for the layout of subplots

figsize : a tuple (width, height) in inches#图片尺寸大小

use_index : boolean, default True#默认用索引做x轴

Use index as ticks for x axis

title : string#图片的标题用字符串

Title to use for the plot

grid : boolean, default None (matlab style default)#图片是否有网格

Axis grid lines

legend : False/True/’reverse’#子图的图例

Place legend on axis subplots

style : list or dict#对每列折线图设置线的类型

matplotlib line style per column

logx : boolean, default False#设置x轴刻度是否取对数

Use log scaling on x axis

logy : boolean, default False

Use log scaling on y axis

loglog : boolean, default False#同时设置x,y轴刻度是否取对数

Use log scaling on both x and y axes

xticks : sequence#设置x轴刻度值,序列形式(比如列表)

Values to use for the xticks

yticks : sequence#设置y轴刻度,序列形式(比如列表)

Values to use for the yticks

xlim : 2-tuple/list#设置坐标轴的范围,列表或元组形式

ylim : 2-tuple/list

rot : int, default None#设置轴标签(轴刻度)的显示旋转度数

Rotation for ticks (xticks for vertical, yticks for horizontal plots)

fontsize : int, default None#设置轴刻度的字体大小

Font size for xticks and yticks

colormap : str or matplotlib colormap object, default None#设置图的区域颜色

Colormap to select colors from. If string, load colormap with that name from matplotlib.

colorbar : boolean, optional

If True, plot colorbar (only relevant for ‘scatter’ and ‘hexbin’ plots)

position : float

Specify relative alignments for bar plot layout. From 0 (left/bottom-end) to 1 (right/top-end). Default is 0.5 (center)

layout : tuple (optional)

(rows, columns) for the layout of the plot

table : boolean, Series or DataFrame, default False

If True, draw a table using the data in the DataFrame and the data will be transposed to meet matplotlib’s default layout. If a Series or DataFrame is passed, use passed data to draw a table.

yerr : DataFrame, Series, array-like, dict and str

See Plotting with Error Bars for detail.

xerr : same types as yerr.

stacked : boolean, default False in line and

bar plots, and True in area plot. If True, create stacked plot.

sort_columns : boolean, default False

Sort column names to determine plot ordering

secondary_y : boolean or sequence, default False

Whether to plot on the secondary y-axis If a list/tuple, which columns to plot on secondary y-axis

mark_right : boolean, default True

When using a secondary_y axis, automatically mark the column labels with “(right)” in the legend

kwds : keywords

Options to pass to matplotlib plotting method

Returns:axes : matplotlib.AxesSubplot or np.array of them

下面从http://pandas.pydata.org/pandas-docs/version/0.13.1/visualization.html的实例分析

%matplotlib inlineimport numpy as npimport pandas as pdimport matplotlib.pyplot as pltplt.rc('figure', figsize=(5, 3))#设置图片大小ts = pd.Series(np.random.randn(1000), index=pd.date_range('1/1/2000', periods=1000))ts = ts.cumsum()ts.plot()

学习pandas下的dataframe画图参数_第1张图片

 plt.figure(); ts.plot(style='k--', label='Series'); plt.legend()#创建个新图片,在新图片上画ts的折线图,并添加图例

学习pandas下的dataframe画图参数_第2张图片

df =pd.DataFrame(np.random.randn(1000, 4), index=ts.index, columns=list('ABCD')) 
df = df.cumsum()
plt.figure(); df.plot(); plt.legend(loc='best')
学习pandas下的dataframe画图参数_第3张图片
df.plot(subplots=True, figsize=(6, 6)); plt.legend(loc='best')#对数据框相同索引分列分别作图
学习pandas下的dataframe画图参数_第4张图片

plt.figure();
ts = pd.Series(np.random.randn(1000), index=pd.date_range('1/1/2000', periods=1000))
ts = np.exp(ts.cumsum())
ts.plot(logy=True) #对y轴进行log(y)放缩,图中y轴刻度依然是y的真实值,而不是log(y)
学习pandas下的dataframe画图参数_第5张图片
plt.figure()
df3 = pd.DataFrame(np.random.randn(1000, 2), columns=['B', 'C']).cumsum()
df3['A'] = pd.Series(list(range(len(df))))
df3.plot(x='A', y='B')#x,y分别设置x轴,y轴的列标签或列的位置
学习pandas下的dataframe画图参数_第6张图片
plt.figure()
df.A.plot()
df.B.plot(secondary_y=True, style='g')#设置第二个y轴(右y轴)
学习pandas下的dataframe画图参数_第7张图片
plt.figure()
ax = df.plot(secondary_y=['A', 'B'])#设置2个列轴,分别对各个列轴画折线图。ax(axes)可以理解为子图,也可以理解成对黑板进行切分,每一个板块就是一个axes
ax.set_ylabel('CD scale')
ax.right_ax.set_ylabel('AB scale')
ax.legend(loc=2)#设置图例的位置
plt.legend(loc=1)
学习pandas下的dataframe画图参数_第8张图片


[source]

你可能感兴趣的:(matplotlib)