OpenCV3.4两种立体匹配算法效果对比

 

立体匹配算法原理与应用

 

 

以OpenCV自带的Aloe图像对为例:

   OpenCV3.4两种立体匹配算法效果对比_第1张图片

 

1.BM算法(Block Matching)

int numberOfDisparities = ((imgSize.width / 8) + 15) & -16;
    cv::Ptr bm = cv::StereoBM::create(16, 9);
    cv::Rect roi1, roi2;
    bm->setROI1(roi1);
    bm->setROI2(roi2);
    bm->setPreFilterCap(31);
    bm->setBlockSize(9);
    bm->setMinDisparity(0);
    bm->setNumDisparities(numberOfDisparities);
    bm->setTextureThreshold(10);
    bm->setUniquenessRatio(15);
    bm->setSpeckleWindowSize(100);
    bm->setSpeckleRange(32);
    bm->setDisp12MaxDiff(1);
    bm->compute(imgL, imgR, disp);

效果如下:

BM算法得到的视差图(左),空洞填充后得到的视差图(右)

OpenCV3.4两种立体匹配算法效果对比_第2张图片  OpenCV3.4两种立体匹配算法效果对比_第3张图片

 

2.SGBM(Semi-Global Block matching)算法

参数设置如下:

enum { STEREO_BM = 0, STEREO_SGBM = 1, STEREO_HH = 2, STEREO_VAR = 3, STEREO_3WAY = 4 };
    int numberOfDisparities = ((imgSize.width / 8) + 15) & -16;
    cv::Ptr sgbm = cv::StereoSGBM::create(0, 16, 3);
    sgbm->setPreFilterCap(63);
    int SADWindowSize = 9;
    int sgbmWinSize = SADWindowSize > 0 ? SADWindowSize : 3;
    sgbm->setBlockSize(sgbmWinSize);
    int cn = imgL.channels();
    sgbm->setP1(8 * cn*sgbmWinSize*sgbmWinSize);
    sgbm->setP2(32 * cn*sgbmWinSize*sgbmWinSize);
    sgbm->setMinDisparity(0);
    sgbm->setNumDisparities(numberOfDisparities);
    sgbm->setUniquenessRatio(10);
    sgbm->setSpeckleWindowSize(100);
    sgbm->setSpeckleRange(32);
    sgbm->setDisp12MaxDiff(1);

    int alg = STEREO_SGBM;
    if (alg == STEREO_HH)
        sgbm->setMode(cv::StereoSGBM::MODE_HH);
    else if (alg == STEREO_SGBM)
        sgbm->setMode(cv::StereoSGBM::MODE_SGBM);
    else if (alg == STEREO_3WAY)
        sgbm->setMode(cv::StereoSGBM::MODE_SGBM_3WAY);
    sgbm->compute(imgL, imgR, disp);

效果如图:

SGBM算法得到的视差图(左),空洞填充后得到的视差图(右)

 OpenCV3.4两种立体匹配算法效果对比_第4张图片  OpenCV3.4两种立体匹配算法效果对比_第5张图片

可见SGBM算法得到的视差图相比于BM算法来说,减少了很多不准确的匹配点,尤其是在深度不连续区域,速度上SGBM要慢于BM算法。OpenCV3.0以后没有实现GC算法,可能是出于速度考虑,以后找时间补上对比图,以及各个算法的详细原理分析。

后面我填充空洞的效果不是很好,如果有更好的方法,望不吝赐教。

 


preFilterCap()匹配图像预处理

  •  两种立体匹配算法都要先对输入图像做预处理,OpenCV源码中中调用函数 static void prefilterXSobel(const cv::Mat& src, cv::Mat& dst, int preFilterCap),参数设置中preFilterCap在此函数中用到。函数步骤如下,作用主要有两点:对于无纹理区域,能够排除噪声干扰;对于边界区域,能够提高边界的区分性,利于后续的匹配代价计算:
  1. 先利用水平Sobel算子求输入图像x方向的微分值Value;
  2. 如果Value<-preFilterCap, 则Value=0;
    如果Value>preFilterCap,则Value=2*preFilterCap;
    如果Value>=-preFilterCap &&Value<=preFilterCap,则Value=Value+preFilterCap;
  3. 输出处理后的图像作为下一步计算匹配代价的输入图像。

。。。。。。。。。。。。。。

 

From:OpenCV3.4两种立体匹配算法效果对比

 

 

你可能感兴趣的:(opencv)