最近项目用到了kalman滤波,本博文简单介绍下卡尔曼滤波器的概念、原理和应用,做个小结。
卡尔曼滤波(Kalman filtering)一种利用线性系统状态方程,通过系统输入输出观测数据,对系统状态进行最优估计的算法。由于观测数据中包括系统中的噪声和干扰的影响,所以最优估计也可看作是滤波过程。
斯坦利·施密特(Stanley Schmidt)首次实现了卡尔曼滤波器。卡尔曼在NASA埃姆斯研究中心访问时,发现他的方法对于解决阿波罗计划的轨道预测很有用,后来阿波罗飞船的导航电脑使用了这种滤波器。 关于这种滤波器的论文由Swerling (1958), Kalman (1960)与 Kalman and Bucy (1961)发表[1]。
卡尔曼滤波的一个典型实例是从一组有限的,包含噪声的,对物体位置的观察序列(可能有偏差)预测出物体的位置的坐标及速度。在很多工程应用(如雷达、计算机视觉)中都可以找到它的身影。同时,卡尔曼滤波也是控制理论以及控制系统工程中的一个重要课题[2]。
例如,对于雷达来说,人们感兴趣的是其能够跟踪目标。但目标的位置、速度、加速度的测量值往往在任何时候都有噪声。卡尔曼滤波利用目标的动态信息,设法去掉噪声的影响,得到一个关于目标位置的好的估计。这个估计可以是对当前目标位置的估计(滤波),也可以是对于将来位置的估计(预测),也可以是对过去位置的估计(插值或平滑)。
扩展卡尔曼滤波(EXTEND KALMAN FILTER, EKF)是由kalman filter考虑时间非线性的动态系统,常应用于目标跟踪系统。
理论上,kalman滤波器需要三个重要假设:
1)被建模的系统是线性的;
2)影响测量的噪声属于白噪声;
3)噪声本质上是高斯分布的。
第一条假设是指k时刻的系统状态可以用某个矩阵与k-1时刻的系统状态的乘积表示。余下两条假设,即噪声是高斯分布的白噪声,其含义为噪声与时间不相关,且只用均值和协方差就可以准确地为幅值建模。
在kalman滤波器滤波器应用中,一般考虑三种运动:
1)动态运动:这种运动是我们期望的前次测量时系统状态的直接结果,如匀速运动等。
2)控制运动:这种运动是我们期望的,由于某种已知的外部因素以某种原因施加于系统,如加速运动等。
3)随机运动:随机的无规则运动,在Kalman滤波器中,至少是可以用高斯模型有效地来建模。
以下是两个重要方程:
状态方程:
五个重要更新公式:
时间更新:
以测量在停车场行驶的汽车为实际例子,汽车的状态用两个位置变量 x 和 y ,以及两个速度变量 vx 和 vy 表示。这四个变量组成状态向量 xk 的元素。 dt 表示速度增量。这里假设的是动态运动模型。
状态转移矩阵H结构如下:
在项目中,用kalman跟踪物体质心运动,建模思路跟这个汽车例子类似,因为运动不是匀速存在偏差(状态误差),因为检测器检测到的目标的质心的位置存在偏差(观测误差),而这些偏差和设定会影响到kalman的跟踪效果。
#include "opencv2/video/tracking.hpp"
#include "opencv2/highgui/highgui.hpp"
#include
using namespace cv;
static inline Point calcPoint(Point2f center, double R, double angle)
{
return center + Point2f((float)cos(angle), (float)-sin(angle))*(float)R;
}
static void help()
{
printf( "\nExamle of c calls to OpenCV's Kalman filter.\n"
" Tracking of rotating point.\n"
" Rotation speed is constant.\n"
" Both state and measurements vectors are 1D (a point angle),\n"
" Measurement is the real point angle + gaussian noise.\n"
" The real and the estimated points are connected with yellow line segment,\n"
" the real and the measured points are connected with red line segment.\n"
" (if Kalman filter works correctly,\n"
" the yellow segment should be shorter than the red one).\n"
"\n"
" Pressing any key (except ESC) will reset the tracking with a different speed.\n"
" Pressing ESC will stop the program.\n"
);
}
int main(int, char**)
{
help();
Mat img(500, 500, CV_8UC3);
KalmanFilter KF(2, 1, 0);
Mat state(2, 1, CV_32F); /* (phi, delta_phi) */
Mat processNoise(2, 1, CV_32F);
Mat measurement = Mat::zeros(1, 1, CV_32F);
char code = (char)-1;
for(;;)
{
randn( state, Scalar::all(0), Scalar::all(0.1) );
KF.transitionMatrix = *(Mat_<float>(2, 2) << 1, 1, 0, 1);
setIdentity(KF.measurementMatrix);
setIdentity(KF.processNoiseCov, Scalar::all(1e-5));
setIdentity(KF.measurementNoiseCov, Scalar::all(1e-1));
setIdentity(KF.errorCovPost, Scalar::all(1));
randn(KF.statePost, Scalar::all(0), Scalar::all(0.1));
for(;;)
{
Point2f center(img.cols*0.5f, img.rows*0.5f);
float R = img.cols/3.f;
double stateAngle = state.at<float>(0);
Point statePt = calcPoint(center, R, stateAngle);
Mat prediction = KF.predict();
double predictAngle = prediction.at<float>(0);
Point predictPt = calcPoint(center, R, predictAngle);
randn( measurement, Scalar::all(0), Scalar::all(KF.measurementNoiseCov.at<float>(0)));
// generate measurement
measurement += KF.measurementMatrix*state;
double measAngle = measurement.at<float>(0);
Point measPt = calcPoint(center, R, measAngle);
// plot points
#define drawCross( center, color, d ) \
line( img, Point( center.x - d, center.y - d ), \
Point( center.x + d, center.y + d ), color, 1, CV_AA, 0); \
line( img, Point( center.x + d, center.y - d ), \
Point( center.x - d, center.y + d ), color, 1, CV_AA, 0 )
img = Scalar::all(0);
drawCross( statePt, Scalar(255,255,255), 3 );
drawCross( measPt, Scalar(0,0,255), 3 );
drawCross( predictPt, Scalar(0,255,0), 3 );
line( img, statePt, measPt, Scalar(0,0,255), 3, CV_AA, 0 );
line( img, statePt, predictPt, Scalar(0,255,255), 3, CV_AA, 0 );
if(theRNG().uniform(0,4) != 0)
KF.correct(measurement);
randn( processNoise, Scalar(0), Scalar::all(sqrt(KF.processNoiseCov.at<float>(0, 0))));
state = KF.transitionMatrix*state + processNoise;
imshow( "Kalman", img );
code = (char)waitKey(100);
if( code > 0 )
break;
}
if( code == 27 || code == 'q' || code == 'Q' )
break;
}
return 0;
}
原文链接:http://blog.csdn.net/u011285477/article/details/52070900
参考资料:
[1]卡尔曼滤波-百度百科
[2]对Kalman(卡尔曼)滤波器的理解-CSDN博客
[3]Kalman滤波器从原理到实现-CSDN博客
[4]《学习OpenCV(中文版)》于仕琪、刘瑞祯 译 清华大学出版社 P384