关于Keras的格式化输出Loss实现

在win7 64位,Anaconda安装的Python3.6.1下安装的TensorFlow与Keras,Keras的backend为TensorFlow。在运行Mask R-CNN时,在进行调试时想知道PyCharm (Python IDE)底部窗口输出的Loss格式是在哪里定义的,如下图红框中所示:

关于Keras的格式化输出Loss实现_第1张图片

                                                                               图1 训练过程的Loss格式化输出

在上图红框中,Loss的输出格式是在哪里定义的呢?有一点是明确的,即上图红框中的内容是在训练的时候输出的。那么先来看一下Mask R-CNN的训练过程。Keras以Numpy数组作为输入数据和标签的数据类型。训练模型一般使用 fit 函数。然而由于Mask R-CNN训练数据巨大,不能一次性全部载入,否则太消耗内存。于是采用生成器的方式一次载入一个batch的数据,而且是在用到这个batch的数据才开始载入的,那么它的训练函数如下:

 self.keras_model.fit_generator(
            train_generator,
            initial_epoch=self.epoch,
            epochs=epochs,
            steps_per_epoch=self.config.STEPS_PER_EPOCH,
            callbacks=callbacks,
            validation_data=val_generator,
            validation_steps=self.config.VALIDATION_STEPS,
            max_queue_size=100,
            workers=workers,
            use_multiprocessing=False,
        )

这里训练模型的函数相应的为 fit_generator 函数。注意其中的参数callbacks=callbacks,这个参数在输出红框中的内容起到了关键性的作用。下面看一下callbacks的值:

# Callbacks
        callbacks = [
            keras.callbacks.TensorBoard(log_dir=self.log_dir,
                                        histogram_freq=0, write_graph=True, write_images=False),
            keras.callbacks.ModelCheckpoint(self.checkpoint_path,
                                            verbose=0, save_weights_only=True),
        ]

在输出红框中的内容所需的数据均保存在self.log_dir下。然后调试进入self.keras_model.fit_generator函数,进入keras,legacy.interfaces的legacy_support(func)函数,如下所示:

    def legacy_support(func):
        @six.wraps(func)
        def wrapper(*args, **kwargs):
            if object_type == 'class':
                object_name = args[0].__class__.__name__
            else:
                object_name = func.__name__
            if preprocessor:
                args, kwargs, converted = preprocessor(args, kwargs)
            else:
                converted = []
            if check_positional_args:
                if len(args) > len(allowed_positional_args) + 1:
                    raise TypeError('`' + object_name +
                                    '` can accept only ' +
                                    str(len(allowed_positional_args)) +
                                    ' positional arguments ' +
                                    str(tuple(allowed_positional_args)) +
                                    ', but you passed the following '
                                    'positional arguments: ' +
                                    str(list(args[1:])))
            for key in value_conversions:
                if key in kwargs:
                    old_value = kwargs[key]
                    if old_value in value_conversions[key]:
                        kwargs[key] = value_conversions[key][old_value]
            for old_name, new_name in conversions:
                if old_name in kwargs:
                    value = kwargs.pop(old_name)
                    if new_name in kwargs:
                        raise_duplicate_arg_error(old_name, new_name)
                    kwargs[new_name] = value
                    converted.append((new_name, old_name))
            if converted:
                signature = '`' + object_name + '('
                for i, value in enumerate(args[1:]):
                    if isinstance(value, six.string_types):
                        signature += '"' + value + '"'
                    else:
                        if isinstance(value, np.ndarray):
                            str_val = 'array'
                        else:
                            str_val = str(value)
                        if len(str_val) > 10:
                            str_val = str_val[:10] + '...'
                        signature += str_val
                    if i < len(args[1:]) - 1 or kwargs:
                        signature += ', '
                for i, (name, value) in enumerate(kwargs.items()):
                    signature += name + '='
                    if isinstance(value, six.string_types):
                        signature += '"' + value + '"'
                    else:
                        if isinstance(value, np.ndarray):
                            str_val = 'array'
                        else:
                            str_val = str(value)
                        if len(str_val) > 10:
                            str_val = str_val[:10] + '...'
                        signature += str_val
                    if i < len(kwargs) - 1:
                        signature += ', '
                signature += ')`'
                warnings.warn('Update your `' + object_name +
                              '` call to the Keras 2 API: ' + signature, stacklevel=2)
            return func(*args, **kwargs)
        wrapper._original_function = func
        return wrapper
    return legacy_support

在上述代码的倒数第4行的return func(*args, **kwargs)处返回func,func为fit_generator函数,现调试进入fit_generator函数,该函数定义在keras.engine.training模块内的fit_generator函数,调试进入函数callbacks.on_epoch_begin(epoch),如下所示:

# Construct epoch logs.
            epoch_logs = {}
            while epoch < epochs:
                for m in self.stateful_metric_functions:
                    m.reset_states()
                callbacks.on_epoch_begin(epoch)

调试进入到callbacks.on_epoch_begin(epoch)函数,进入on_epoch_begin函数,如下所示:

def on_epoch_begin(self, epoch, logs=None):
        """Called at the start of an epoch.

        # Arguments
            epoch: integer, index of epoch.
            logs: dictionary of logs.
        """
        logs = logs or {}
        for callback in self.callbacks:
            callback.on_epoch_begin(epoch, logs)
        self._delta_t_batch = 0.
        self._delta_ts_batch_begin = deque([], maxlen=self.queue_length)
        self._delta_ts_batch_end = deque([], maxlen=self.queue_length)

在上述函数on_epoch_begin中调试进入callback.on_epoch_begin(epoch, logs)函数,转到类ProgbarLogger(Callback)中定义的on_epoch_begin函数,如下所示:

class ProgbarLogger(Callback):
    """Callback that prints metrics to stdout.

    # Arguments
        count_mode: One of "steps" or "samples".
            Whether the progress bar should
            count samples seen or steps (batches) seen.
        stateful_metrics: Iterable of string names of metrics that
            should *not* be averaged over an epoch.
            Metrics in this list will be logged as-is.
            All others will be averaged over time (e.g. loss, etc).

    # Raises
        ValueError: In case of invalid `count_mode`.
    """

    def __init__(self, count_mode='samples',
                 stateful_metrics=None):
        super(ProgbarLogger, self).__init__()
        if count_mode == 'samples':
            self.use_steps = False
        elif count_mode == 'steps':
            self.use_steps = True
        else:
            raise ValueError('Unknown `count_mode`: ' + str(count_mode))
        if stateful_metrics:
            self.stateful_metrics = set(stateful_metrics)
        else:
            self.stateful_metrics = set()

    def on_train_begin(self, logs=None):
        self.verbose = self.params['verbose']
        self.epochs = self.params['epochs']

    def on_epoch_begin(self, epoch, logs=None):
        if self.verbose:
            print('Epoch %d/%d' % (epoch + 1, self.epochs))
            if self.use_steps:
                target = self.params['steps']
            else:
                target = self.params['samples']
            self.target = target
            self.progbar = Progbar(target=self.target,
                                   verbose=self.verbose,
                                   stateful_metrics=self.stateful_metrics)
        self.seen = 0

在上述代码的

print('Epoch %d/%d' % (epoch + 1, self.epochs))

输出

Epoch 1/40(如红框中所示内容的第一行)。

然后返回到keras.engine.training模块内的fit_generator函数,执行到self.train_on_batch函数,如下所示:

outs = self.train_on_batch(x, y,
                                               sample_weight=sample_weight,
                                               class_weight=class_weight)

                    if not isinstance(outs, list):
                        outs = [outs]
                    for l, o in zip(out_labels, outs):
                        batch_logs[l] = o

                    callbacks.on_batch_end(batch_index, batch_logs)

                    batch_index += 1
                    steps_done += 1

调试进入上述代码中的callbacks.on_batch_end(batch_index, batch_logs)函数,进入到on_batch_end函数后,该函数的定义如下所示:

    def on_batch_end(self, batch, logs=None):
        """Called at the end of a batch.

        # Arguments
            batch: integer, index of batch within the current epoch.
            logs: dictionary of logs.
        """
        logs = logs or {}
        if not hasattr(self, '_t_enter_batch'):
            self._t_enter_batch = time.time()
        self._delta_t_batch = time.time() - self._t_enter_batch
        t_before_callbacks = time.time()
        for callback in self.callbacks:
            callback.on_batch_end(batch, logs)
        self._delta_ts_batch_end.append(time.time() - t_before_callbacks)
        delta_t_median = np.median(self._delta_ts_batch_end)
        if (self._delta_t_batch > 0. and
           (delta_t_median > 0.95 * self._delta_t_batch and delta_t_median > 0.1)):
            warnings.warn('Method on_batch_end() is slow compared '
                          'to the batch update (%f). Check your callbacks.'
                          % delta_t_median)

接着继续调试进入上述代码中的callback.on_batch_end(batch, logs)函数,进入到在类中ProgbarLogger(Callback)定义的on_batch_end函数,如下所示:

def on_batch_end(self, batch, logs=None):
        logs = logs or {}
        batch_size = logs.get('size', 0)
        if self.use_steps:
            self.seen += 1
        else:
            self.seen += batch_size

        for k in self.params['metrics']:
            if k in logs:
                self.log_values.append((k, logs[k]))

        # Skip progbar update for the last batch;
        # will be handled by on_epoch_end.
        if self.verbose and self.seen < self.target:
            self.progbar.update(self.seen, self.log_values)

然后执行到上述代码的最后一行self.progbar.update(self.seen, self.log_values),调试进入update函数,该函数定义在模块keras.utils.generic_utils中的类Progbar(object)定义的函数。类的定义及方法如下所示:

class Progbar(object):
    """Displays a progress bar.

    # Arguments
        target: Total number of steps expected, None if unknown.
        width: Progress bar width on screen.
        verbose: Verbosity mode, 0 (silent), 1 (verbose), 2 (semi-verbose)
        stateful_metrics: Iterable of string names of metrics that
            should *not* be averaged over time. Metrics in this list
            will be displayed as-is. All others will be averaged
            by the progbar before display.
        interval: Minimum visual progress update interval (in seconds).
    """

    def __init__(self, target, width=30, verbose=1, interval=0.05,
                 stateful_metrics=None):
        self.target = target
        self.width = width
        self.verbose = verbose
        self.interval = interval
        if stateful_metrics:
            self.stateful_metrics = set(stateful_metrics)
        else:
            self.stateful_metrics = set()

        self._dynamic_display = ((hasattr(sys.stdout, 'isatty') and
                                  sys.stdout.isatty()) or
                                 'ipykernel' in sys.modules)
        self._total_width = 0
        self._seen_so_far = 0
        self._values = collections.OrderedDict()
        self._start = time.time()
        self._last_update = 0

    def update(self, current, values=None):
        """Updates the progress bar.

        # Arguments
            current: Index of current step.
            values: List of tuples:
                `(name, value_for_last_step)`.
                If `name` is in `stateful_metrics`,
                `value_for_last_step` will be displayed as-is.
                Else, an average of the metric over time will be displayed.
        """
        values = values or []
        for k, v in values:
            if k not in self.stateful_metrics:
                if k not in self._values:
                    self._values[k] = [v * (current - self._seen_so_far),
                                       current - self._seen_so_far]
                else:
                    self._values[k][0] += v * (current - self._seen_so_far)
                    self._values[k][1] += (current - self._seen_so_far)
            else:
                # Stateful metrics output a numeric value.  This representation
                # means "take an average from a single value" but keeps the
                # numeric formatting.
                self._values[k] = [v, 1]
        self._seen_so_far = current

        now = time.time()
        info = ' - %.0fs' % (now - self._start)
        if self.verbose == 1:
            if (now - self._last_update < self.interval and
                    self.target is not None and current < self.target):
                return

            prev_total_width = self._total_width
            if self._dynamic_display:
                sys.stdout.write('\b' * prev_total_width)
                sys.stdout.write('\r')
            else:
                sys.stdout.write('\n')

            if self.target is not None:
                numdigits = int(np.floor(np.log10(self.target))) + 1
                barstr = '%%%dd/%d [' % (numdigits, self.target)
                bar = barstr % current
                prog = float(current) / self.target
                prog_width = int(self.width * prog)
                if prog_width > 0:
                    bar += ('=' * (prog_width - 1))
                    if current < self.target:
                        bar += '>'
                    else:
                        bar += '='
                bar += ('.' * (self.width - prog_width))
                bar += ']'
            else:
                bar = '%7d/Unknown' % current

            self._total_width = len(bar)
            sys.stdout.write(bar)

            if current:
                time_per_unit = (now - self._start) / current
            else:
                time_per_unit = 0
            if self.target is not None and current < self.target:
                eta = time_per_unit * (self.target - current)
                if eta > 3600:
                    eta_format = '%d:%02d:%02d' % (eta // 3600, (eta % 3600) // 60, eta % 60)
                elif eta > 60:
                    eta_format = '%d:%02d' % (eta // 60, eta % 60)
                else:
                    eta_format = '%ds' % eta

                info = ' - ETA: %s' % eta_format
            else:
                if time_per_unit >= 1:
                    info += ' %.0fs/step' % time_per_unit
                elif time_per_unit >= 1e-3:
                    info += ' %.0fms/step' % (time_per_unit * 1e3)
                else:
                    info += ' %.0fus/step' % (time_per_unit * 1e6)

            for k in self._values:
                info += ' - %s:' % k
                if isinstance(self._values[k], list):
                    avg = np.mean(
                        self._values[k][0] / max(1, self._values[k][1]))
                    if abs(avg) > 1e-3:
                        info += ' %.4f' % avg
                    else:
                        info += ' %.4e' % avg
                else:
                    info += ' %s' % self._values[k]

            self._total_width += len(info)
            if prev_total_width > self._total_width:
                info += (' ' * (prev_total_width - self._total_width))

            if self.target is not None and current >= self.target:
                info += '\n'

            sys.stdout.write(info)
            sys.stdout.flush()

        elif self.verbose == 2:
            if self.target is None or current >= self.target:
                for k in self._values:
                    info += ' - %s:' % k
                    avg = np.mean(
                        self._values[k][0] / max(1, self._values[k][1]))
                    if avg > 1e-3:
                        info += ' %.4f' % avg
                    else:
                        info += ' %.4e' % avg
                info += '\n'

                sys.stdout.write(info)
                sys.stdout.flush()

        self._last_update = now

    def add(self, n, values=None):
        self.update(self._seen_so_far + n, values)

重点是上述代码中的update(self, current, values=None)函数,在该函数内设置断点,即可调入该函数。下面重点分析上述代码中的几个输出条目:

1. sys.stdout.write('\n')       #换行

2. sys.stdout.write('bar')     #输出 [..................],其中bar= [..................];

3. sys.stdout.write(info)      #输出loss格式,其中info='- ETA:...';

4. sys.stdout.flush()           #刷新缓存,立即得到输出。

通过对Mask R-CNN代码的调试分析可知,图1中的红框中的训练过程中的Loss格式化输出是由built-in模块实现的。若想得到类似的格式化输出,关键在self.keras_model.fit_generator函数中传入callbacks参数和callbacks中内容的定义。

 

你可能感兴趣的:(深度学习,Python)