字符设备驱动

main.c

//#include 
#include 
#include 
#include 

#include 	/* printk() */
#include 		/* kmalloc() */
#include 		/* everything... */
#include 	/* error codes */
#include 	/* size_t */
#include 
#include 	/* O_ACCMODE */
#include 
#include 

#include 		/* cli(), *_flags */
#include 	/* copy_*_user */

#include "scull.h"		/* local definitions */

/*
 * Our parameters which can be set at load time.
 */

int scull_major =   SCULL_MAJOR;
int scull_minor =   0;
int scull_nr_devs = SCULL_NR_DEVS;	/* number of bare scull devices */
int scull_quantum = SCULL_QUANTUM;
int scull_qset =    SCULL_QSET;

module_param(scull_major, int, S_IRUGO);
module_param(scull_minor, int, S_IRUGO);
module_param(scull_nr_devs, int, S_IRUGO);
module_param(scull_quantum, int, S_IRUGO);
module_param(scull_qset, int, S_IRUGO);

MODULE_AUTHOR("Alessandro Rubini, Jonathan Corbet");
MODULE_LICENSE("Dual BSD/GPL");

struct scull_dev *scull_devices;	/* allocated in scull_init_module */

int scull_trim(struct scull_dev *dev)
{
	struct scull_qset *next, *dptr;
	int qset = dev->qset;
	int i;
	
	for(dptr=dev->data; dptr; dptr=next)
	{
		if(dptr->data)
		{
			for(i=0; idata[i]);
			kfree(dptr->data);
			dptr->data = NULL;
		}
		
		next = dptr->next;
		kfree(dptr);
	}
	
	dev->size = 0;
	dev->quantum = scull_quantum;
	dev->qset = scull_qset;
	dev->data = NULL;
	return 0;
}

#ifdef SCULL_DEBUG

int scull_read_procmem(char *buf, char **start, off_t offset, int count, int *eof, void *data)
{
	int i, j, len = 0;
	int limit = count - 80;
	
	for(i=0; idata;
		
		if(down_interruptible(&d->sem))
			return -ERESTARTSYS;
		
		len += sprintf(buf+len, "\nDevice %i: qset %i, q %i, sz %li\n",
				i, d->qset, d->quantum, d->size);
				
		for(; qs && len <= limit; qs = qs->next)
		{
			len += sprintf(buf + len, "  item at %p, qset at %p\n", qs, 	qs->data);
			
			if(qs->data && !qs->next)
			{
				for(j=0; jqset; j++)
				{
					if(qs->data[j])
						len += sprintf(buf + len, "		% 4i: %8p\n", j, qs->data[j]);
				}
			}
		}
		
		up(&scull_devices[i].sem);
	}
	
	*eof = 1;
	return len;
}

static void *scull_seq_start(struct seq_file *s, loff_t *pos)
{
	if(*pos >= scull_nr_devs)
		return NULL;
	
	return scull_devices + *pos;
}

static void *scull_seq_next(struct seq_file *s, void *v, loff_t *pos)
{
	(*pos)++;
	
	if(*pos >= scull_nr_devs)
		return NULL;
	
	return scull_devices + *pos;
}

static void scull_seq_stop(struct seq_file *s, void *v)
{
	
}

static int scull_seq_show(struct seq_file *s, void *v)
{
	struct scull_dev *dev = (struct scull_dev*)v;
	struct scull_qset *d;
	int i;
	
	if(down_interruptible(&dev->sem))
		return -ERESTARTSYS;
	seq_printf(s, "\nDevice %i: qset %i, q %i, sz %li\n",
			(int)(dev - scull_devices), dev->qset,
			dev->quantum, dev->size);
	
	for(d=dev->data; d; d=d->next)
	{
		seq_printf(s, "	 item at %p, qset at %p\n", d, d->data);
		
		if(d->data && !d->next)
		{
			for(i=0; iqset; i++)
			{
				if(d->data[i])
					seq_printf(s, "		% 4i: %8p\n", i, d->data[i]);
			}
		}
	}
	
	up(&dev->sem);
	return 0;
}

static struct seq_operations scull_seq_ops = 
{
	.start 	= 	scull_seq_start,
	.next	=	scull_seq_next,
	.stop	=	scull_seq_stop,
	.show	=	scull_seq_show
};

static int scull_proc_open(struct inode *inode, struct file *file)
{
	return seq_open(file, &scull_seq_ops);
}

static struct file_operations scull_proc_ops = 
{
	.owner 	=	THIS_MODULE,
	.open	=	scull_proc_open,
	.read	=	seq_read,
	.llseek	=	seq_lseek,
	.release=	seq_release
};

static void scull_create_proc(void)
{
	struct proc_dir_entry *entry;
	
	create_proc_read_entry("scullmem", 0,NULL, scull_read_procmem, NULL);
	entry = create_proc_entry("scullseq", 0, NULL);
	if(entry)
		entry->proc_fops = &scull_proc_ops;
}

static void scull_remove_proc(void)
{
	remove_proc_entry("scullmem", NULL);
	remove_proc_entry("scullseq", NULL);
}

#endif

int scull_open(struct inode *inode, struct file *filp)
{
	struct scull_dev *dev;
	
	dev = container_of(inode->i_cdev, struct scull_dev, cdev);
	filp->private_data = dev;
	
	if((filp->f_flags & O_ACCMODE) == O_WRONLY)
	{
		if(down_interruptible(&dev->sem))
			return -ERESTARTSYS;
		scull_trim(dev);
		up(&dev->sem);
	}
	
	return 0;
}

int scull_release(struct inode *inode, struct file *filp)
{
	return 0;
}

struct scull_qset *scull_follow(struct scull_dev *dev, int n)
{
	struct scull_qset *qs = dev->data;
	
	if(!qs)
	{
		qs = dev->data = kmalloc(sizeof(struct scull_qset), GFP_KERNEL);
		if(qs == NULL)
			return NULL;
		
		memset(qs, 0, sizeof(struct scull_qset));
	}
	
	while(n--)
	{
		if(!qs->next)
		{
			qs->next = kmalloc(sizeof(struct scull_qset), GFP_KERNEL);
			if(qs->next == NULL)
				return NULL;
			
			memset(qs->next, 0, sizeof(struct scull_qset));
		}
		
		qs = qs->next;
		continue;
	}
	
	return qs;
}

ssize_t scull_read(struct file *filp, char __user *buf, size_t count, loff_t *f_pos)
{
	struct scull_dev *dev = filp->private_data;
	struct scull_qset *dptr;
	int quantum = dev->quantum;
	int qset = dev->qset;
	int itemsize = quantum *qset;
	int item, s_pos, q_pos, rest;
	ssize_t retval = 0;
	
	if(down_interruptible(&dev->sem))
		return -ERESTARTSYS;
	if(*f_pos >= dev->size)
		goto out;
	if(*f_pos + count > dev->size)
		count = dev->size - *f_pos;
	
	item = (long)*f_pos / itemsize;
	rest = (long)*f_pos % itemsize;
	s_pos= rest / quantum;
	q_pos= rest % quantum;
	
	dptr = scull_follow(dev, item);
	if(dptr == NULL || !dptr->data || !dptr->data[s_pos])
		goto out;
	
	if(count > quantum - q_pos)
		count = quantum - q_pos;
	
	if(copy_to_user(buf, dptr->data[s_pos] + q_pos, count))
	{
		retval = -EFAULT;
		goto out;
	}
	
	*f_pos += count;
	retval	= count;
	
	out:
		up(&dev->sem);
		return retval;
}

ssize_t scull_write(struct file *filp, const char __user *buf, size_t count, loff_t *f_pos)
{
	struct scull_dev *dev = filp->private_data;
	struct scull_qset *dptr;
	int quantum = dev->quantum;
	int qset = dev->qset;
	int itemsize = quantum * qset;
	int item, s_pos, q_pos, rest;
	ssize_t retval = -ENOMEM;
	
	if(down_interruptible(&dev->sem))
		return -ERESTARTSYS;
	
	item = (long)*f_pos / itemsize;
	rest = (long)*f_pos % itemsize;
	s_pos = rest / quantum;
	q_pos = rest % quantum;
	
	dptr = scull_follow(dev, item);
	if(dptr == NULL)
		goto out;
	
	if(!dptr->data)
	{
		dptr->data = kmalloc(qset * sizeof(char *), GFP_KERNEL);
		if(!dptr->data)
			goto out;
		
		memset(dptr->data, 0, qset * sizeof(char *));
	}
	
	if(!dptr->data[s_pos])
	{
		dptr->data[s_pos] = kmalloc(quantum, GFP_KERNEL);
		if(!dptr->data[s_pos])
			goto out;
	}
	
	if(count > quantum - q_pos)
		count = quantum - q_pos;
	
	if(copy_from_user(dptr->data[s_pos] + q_pos, buf, count))
	{
		retval = -EFAULT;
		goto out;
	}
	
	*f_pos += count;
	retval  = count;
	
	if(dev->size < *f_pos)
		dev->size = *f_pos;
	
	out:
		up(&dev->sem);
		return retval;
	
}

int scull_ioctl(struct inode *inode, struct file *filp, unsigned int cmd, unsigned long arg)
{
	int err = 0, tmp;
	int retval = 0;
	
	if(_IOC_TYPE(cmd) != SCULL_IOC_MAGIC)
		return -ENOTTY;
	if(_IOC_NR(cmd) > SCULL_IOC_MAXNR)
		return -ENOTTY;
	
	if(_IOC_DIR(cmd) & _IOC_READ)
		err = !access_ok(VERIFY_WRITE, (void __user*)arg, _IOC_SIZE(cmd));
	else if (_IOC_DIR(cmd) & _IOC_WRITE)
		err = !access_ok(VERIFY_READ, (void __user *)arg, _IOC_SIZE(cmd));
	if(err)
		return -EFAULT;
	
	switch(cmd)
	{
		case SCULL_IOCRESET:
			scull_quantum = SCULL_QUANTUM;
			scull_qset	  = SCULL_QSET;
			break;
		case SCULL_IOCSQUANTUM:
			if(!capable(CAP_SYS_ADMIN))
				return -EPERM;
			retval = __get_user(scull_quantum, (int __user *)arg);
			break;
		case SCULL_IOCTQUANTUM:
			if(! capable(CAP_SYS_ADMIN))
				return -EPERM;
			scull_quantum = arg;
			break;
		case SCULL_IOCGQUANTUM:
			retval = __put_user(scull_quantum, (int __user *)arg);
			break;
		case SCULL_IOCQQUANTUM:
			return scull_quantum;
		case SCULL_IOCXQUANTUM:
			if(!capable(CAP_SYS_ADMIN))
				return -EPERM;
			tmp = scull_quantum;
			retval= __get_user(scull_quantum, (int __user*)arg);
			if(retval == 0)
				retval = __put_user(tmp, (int __user*)arg);
			break;
		case SCULL_IOCHQUANTUM:
			if(!capable(CAP_SYS_ADMIN))
				return -EPERM;
			tmp = scull_quantum;
			scull_quantum = arg;
			return tmp;
		case SCULL_IOCSQSET:
			if(!capable(CAP_SYS_ADMIN))
				return -EPERM;
			retval = __get_user(scull_qset, (int __user*)arg);
			break;
		case SCULL_IOCTQSET:
			if(!capable(CAP_SYS_ADMIN))
				return -EPERM;
			scull_qset = arg;
			break;
		case SCULL_IOCGQSET:
			retval = __put_user(scull_qset, (int __user*)arg);
			break;
		case SCULL_IOCXQSET:
			if(!capable(CAP_SYS_ADMIN))
				return -EPERM;
			tmp = scull_qset;
			retval = __get_user(scull_qset, (int __user*)arg);
			if(retval == 0)
				retval = put_user(tmp, (int __user*)arg);
			break;
		case SCULL_IOCHQSET:
			if(!capable(CAP_SYS_ADMIN))
				return -EPERM;
			tmp = scull_qset;
			scull_qset = arg;
			return tmp;
		case SCULL_P_IOCTSIZE:
			scull_p_buffer = arg;
			break;
		case SCULL_P_IOCQSIZE:
			return scull_p_buffer;
		default:
			return -ENOTTY;
					
	}
	
	return retval;
}

loff_t scull_llseek(struct file *filp, loff_t off, int whence)
{
	struct scull_dev *dev = filp->private_data;
	loff_t newpos;
	
	switch(whence)
	{
		case 0:
			newpos = off;
			break;
		case 1:
			newpos = filp->f_pos + off;
			break;
		case 2:
			newpos = dev->size + off;
			break;
		default:
			return -EINVAL;
		
	}
	
	if(newpos<0)
		return -EINVAL;
	
	filp->f_pos = newpos;
	return newpos;
	
}

struct file_operations scull_fops = 
{
	.owner	=	THIS_MODULE,
	.llseek	=	scull_llseek,
	.read	=	scull_read,
	.write	=	scull_write,
	.ioctl	=	scull_ioctl,
	.open	=	scull_open,
	.release=	scull_release,
	
};

void scull_cleanup_module(void)
{
	int i;
	dev_t devno = MKDEV(scull_major, scull_minor);
	
	if(scull_devices)
	{
		for(i=0; icdev, &scull_fops);
	dev->cdev.owner = THIS_MODULE;

	err = cdev_add(&dev->cdev, devno, 1);
	if(err)
	{
		printk(KERN_NOTICE "Error %d adding scull%d", err, index);
	}
}

int scull_init_module(void)
{
	int result, i;
	dev_t dev = 0;
	
	if(scull_major)
	{
		dev = MKDEV(scull_major, scull_minor);
		result = register_chrdev_region(dev, scull_nr_devs, "scull");
	}else
	{
		result = alloc_chrdev_region(&dev, scull_minor, scull_nr_devs, "scull");
		scull_major = MAJOR(dev);
	}
	
	if(result<0)
	{
		printk(KERN_WARNING "scull: can not get major %d\n", scull_major);
		return result;
	}
	
	scull_devices = kmalloc(scull_nr_devs * sizeof(struct scull_dev), GFP_KERNEL);
	if(!scull_devices)
	{
		result = -ENOMEM;
		goto fail;
	}
	memset(scull_devices, 0, scull_nr_devs * sizeof(struct scull_dev));
	
	for(i=0; i

pipe.c

#include 
#include 

#include 	/* printk(), min() */
#include 		/* kmalloc() */
#include 		/* everything... */
#include 
#include 	/* error codes */
#include 	/* size_t */
#include 
#include 
#include 
#include 
#include 

#include "scull.h"		/* local definitions */

struct scull_pipe {
        wait_queue_head_t inq, outq;       /* read and write queues */
        char *buffer, *end;                /* begin of buf, end of buf */
        int buffersize;                    /* used in pointer arithmetic */
        char *rp, *wp;                     /* where to read, where to write */
        int nreaders, nwriters;            /* number of openings for r/w */
        struct fasync_struct *async_queue; /* asynchronous readers */
        struct semaphore sem;              /* mutual exclusion semaphore */
        struct cdev cdev;                  /* Char device structure */
};

/* parameters */
static int scull_p_nr_devs = SCULL_P_NR_DEVS;	/* number of pipe devices */
int scull_p_buffer =  SCULL_P_BUFFER;	/* buffer size */
dev_t scull_p_devno;			/* Our first device number */

module_param(scull_p_nr_devs, int, 0);	/* FIXME check perms */
module_param(scull_p_buffer, int, 0);

static struct scull_pipe *scull_p_devices;

static int scull_p_fasync(int fd, struct file *filp, int mode);
static int spacefree(struct scull_pipe *dev);


static int scull_p_open(struct inode *inode, struct file *filp)
{
	struct scull_pipe *dev;
	
	dev = container_of(inode->i_cdev, struct scull_pipe, cdev);
	filp->private_data = dev;
	
	if(down_interruptible(&dev->sem))
		return -ERESTARTSYS;
	if(!dev->buffer)
	{
		dev->buffer = kmalloc(scull_p_buffer, GFP_KERNEL);
		if(!dev->buffer)
		{
			up(&dev->sem);
			return -ENOMEM;
		}
	}
	
	dev->buffersize = scull_p_buffer;
	dev->end = dev->buffer + dev->buffersize;
	dev->rp = dev->wp = dev->buffer;
	
	if(filp->f_mode & FMODE_READ)
		dev->nreaders++;
	if(filp->f_mode & FMODE_WRITE)
		dev->nwriters++;
	
	up(&dev->sem);
	
	return nonseekable_open(inode, filp);
}

static int scull_p_release(struct inode *inode, struct file *filp)
{
	struct scull_pipe *dev = filp->private_data;
	
	scull_p_fasync(-1, filp, 0);
	down(&dev->sem);
	
	if(filp->f_mode & FMODE_READ)
		dev->nreaders--;
	if(filp->f_mode & FMODE_WRITE)
		dev->nwriters--;
	if(dev->nreaders + dev->nwriters == 0)
	{
		kfree(dev->buffer);
		dev->buffer = NULL;
	}
		
	return 0;
}

static ssize_t scull_p_read(struct file *filp, char __user *buf, size_t count, loff_t *f_pos)
{
	struct scull_pipe *dev = filp->private_data;
	
	if(down_interruptible(&dev->sem))
		return -ERESTARTSYS;
	
	while(dev->rp == dev->wp)
	{
		up(&dev->sem);
		
		if(filp->f_flags & O_NONBLOCK)
			return -EAGAIN;
		PDEBUG("\"%s\" reading: going to sleep\n", current->comm);
		if(wait_event_interruptible(dev->inq, (dev->rp != dev->wp)))
			return -ERESTARTSYS;
		if(down_interruptible(&dev->sem))
			return -ERESTARTSYS;
	}
	
	if(dev->wp > dev->rp)
		count = min(count, (size_t)(dev->wp - dev->rp));
	else
		count = min(count, (size_t)(dev->end - dev->rp));
	
	if(copy_to_user(buf, dev->rp, count))
	{
		up(&dev->sem);
		return -EFAULT;
	}
	
	dev->rp += count;
	if(dev->rp == dev->end)
		dev->rp = dev->buffer;
	up(&dev->sem);
	
	wake_up_interruptible(&dev->outq);
	PDEBUG("\"%s\" did read %li bytes\n", current->comm, (long)count);
	return count;
}

static int scull_getwritespace(struct scull_pipe *dev, struct file *filp)
{
	while(spacefree(dev) == 0)
	{
		DEFINE_WAIT(wait);
		
		up(&dev->sem);
		if(filp->f_flags & O_NONBLOCK)
			return -EAGAIN;
		PDEBUG("\"%s\" writing: going to sleep\n", current->comm);
		prepare_to_wait(&dev->outq, &wait, TASK_INTERRUPTIBLE);
		
		if(spacefree(dev) == 0)
			schedule();
		finish_wait(&dev->outq, &wait);
		
		if(signal_pending(current))
			return -ERESTARTSYS;
		if(down_interruptible(&dev->sem))
			return -ERESTARTSYS;
	}
	
	return 0;
}

static int spacefree(struct scull_pipe *dev)
{
	if(dev->rp == dev->wp)
		return dev->buffersize - 1;
	
	return ((dev->rp + dev->buffersize - dev->wp) % dev->buffersize) -1;
}

static ssize_t scull_p_write(struct file *filp, const char __user *buf, size_t count, loff_t *f_pos)
{
	struct scull_pipe *dev = filp->private_data;
	int result;
	
	if(down_interruptible(&dev->sem))
		return -ERESTARTSYS;
	
	result = scull_getwritespace(dev, filp);
	if(result)
		return result;
	
	count = min(count, (size_t)spacefree(dev));
	if(dev->wp >= dev->rp)
		count = min(count, (size_t)(dev->end - dev->wp));
	else
		count = min(count, (size_t)(dev->rp - dev->wp - 1));
	
	PDEBUG("Going to accept %li bytes to %p from %p\n", (long)count, dev->wp, buf);
	if(copy_from_user(dev->wp, buf, count))
	{
		up(&dev->sem);
		return -EFAULT;
	}
	
	dev->wp += count;
	if(dev->wp == dev->end)
		dev->wp = dev->buffer;
	up(&dev->sem);
	
	wake_up_interruptible(&dev->inq);
	
	if(dev->async_queue)
		kill_fasync(&dev->async_queue, SIGIO, POLL_IN);
	PDEBUG("\"%s\" did write %li bytes\n",current->comm, (long)count);
	
	return count;
}

static unsigned int scull_p_poll(struct file *filp, poll_table *wait)
{
	struct scull_pipe *dev = filp->private_data;
	unsigned int mask = 0;
	
	down(&dev->sem);
	poll_wait(filp, &dev->inq, wait);
	poll_wait(filp, &dev->outq, wait);
	
	if(dev->rp != dev->wp)
		mask |= POLLIN | POLLRDNORM;
	if(spacefree(dev))
		mask |= POLLOUT | POLLWRNORM;
	
	up(&dev->sem);
	return mask;
}

static int scull_p_fasync(int fd, struct file *filp, int mode)
{
	struct scull_pipe *dev = filp->private_data;
	
	return fasync_helper(fd, filp, mode, &dev->async_queue);
}

#ifdef SCULL_DEBUG

static void scullp_proc_offset(char *buf, char **start, off_t *offset, int *len)
{
	if(*offset == 0)
		return;
	if(*offset >= *len)
	{
		*offset -= *len;
		*len = 0;
	}
	else
	{
		*start = buf + *offset;
		*offset = 0;
	}
	
}

static int scull_read_p_mem(char *buf, char **start, off_t offset, int count, int *eof, void *data)
{
	int i, len;
	struct scull_pipe *p;

#define LIMIT (PAGE_SIZE-200)	/* don't print any more after this size */
	
	len = sprintf(buf, "Default buffersize is %i\n", scull_p_buffer);
	for(i=0; isem))
			return -ERESTARTSYS;
		
		len += sprintf(buf+len, "\nDevice %i: %p\n", i, p);
		len += sprintf(buf+len, "	Buffer: %p to %p (%i bytes)\n", p->buffer, p->end, p->buffersize);
		len += sprintf(buf+len, "	rp %p	wp %p\n", p->rp, p->wp);
		len += sprintf(buf+len, "	readers %i	  writers %i\n", p->nreaders, p->nwriters);
		
		up(&p->sem);
		scullp_proc_offset(buf, start, &offset, &len);
	}
	
	*eof = (len <= LIMIT);
	return len;
}

#endif

struct file_operations scull_pipe_fops = 
{
	.owner	=	THIS_MODULE,
	.llseek	=	no_llseek,
	.read	=	scull_p_read,
	.write	=	scull_p_write,
	.poll	=	scull_p_poll,
	.ioctl	=	scull_ioctl,
	.open	=	scull_p_open,
	.release=	scull_p_release,
	.fasync	=	scull_p_fasync,
};

static void scull_p_setup_cdev(struct scull_pipe *dev, int index)
{
	int err;
	int devno = scull_p_devno + index;
	
	cdev_init(&dev->cdev, &scull_pipe_fops);
	dev->cdev.owner = THIS_MODULE;
	
	err = cdev_add(&dev->cdev, devno, 1);
	if(err)
	{
		printk(KERN_NOTICE "Error %d adding scullpipe%d", err, index);
	}
	
}

int scull_p_init(dev_t firstdev)
{
	int i, result;
	
	result = register_chrdev_region(firstdev, scull_p_nr_devs, "scullp");
	if(result < 0)
	{
		printk(KERN_NOTICE "Unable to get scullp region, error %d\n", result);
		return 0;
	}
	
	scull_p_devno = firstdev;
	scull_p_devices = kmalloc(scull_p_nr_devs * sizeof(struct scull_pipe), GFP_KERNEL);
	if(scull_p_devices == NULL)
	{
		unregister_chrdev_region(firstdev, scull_p_nr_devs);
		return 0;
	}
	memset(scull_p_devices, 0, scull_p_nr_devs * sizeof(struct scull_pipe));
	
	for(i=0; i

access.c

#include  /* printk() */
#include 
#include    /* kmalloc() */
#include      /* everything... */
#include   /* error codes */
#include   /* size_t */
#include 
#include 
#include 
#include 
#include 
#include 

#include "scull.h"        /* local definitions */

static dev_t scull_a_firstdev;  /* Where our range begins */

/************************************************************************/
static struct scull_dev scull_s_device;
static atomic_t scull_s_available = ATOMIC_INIT(1);

static int scull_s_open(struct inode *inode, struct file *filp)
{
	struct scull_dev *dev = &scull_s_device;
	
	if(!atomic_dec_and_test(&scull_s_available))
	{
		atomic_inc(&scull_s_available);
		return -EBUSY;
	}
	
	if((filp->f_flags & O_ACCMODE) == O_WRONLY)
		scull_trim(dev);
	filp->private_data = dev;
	
	return 0;
}

static int scull_s_release(struct inode *inode, struct file *filp)
{
	atomic_inc(&scull_s_available);
	return 0;
}

struct file_operations scull_sngl_fops = 
{
	.owner	=	THIS_MODULE,
	.llseek	=	scull_llseek,
	.read	=	scull_read,
	.write	=	scull_write,
	.ioctl	=	scull_ioctl,
	.open	=	scull_s_open,
	.release=	scull_s_release,
};

/************************************************************************/
static struct scull_dev scull_u_device;
static int scull_u_count;	/* initialized to 0 by default */
static uid_t scull_u_owner;	/* initialized to 0 by default */
static spinlock_t scull_u_lock = SPIN_LOCK_UNLOCKED;

static int scull_u_open(struct inode *inode, struct file *filp)
{
	struct scull_dev *dev = &scull_u_device;
	
	spin_lock(&scull_u_lock);
	
	if(scull_u_count && 
		(scull_u_owner != current->cred->uid) &&
		(scull_u_owner != current->cred->euid) &&
		!capable(CAP_DAC_OVERRIDE))
	{
		spin_unlock(&scull_u_lock);
		return -EBUSY;
	}
	
	if(scull_u_count == 0)
		scull_u_owner = current->cred->uid;
	
	scull_u_count++;
	spin_unlock(&scull_u_lock);
	
	if((filp->f_flags & O_ACCMODE) == O_WRONLY)
		scull_trim(dev);
	filp->private_data = dev;
	
	return 0;
}

static int scull_u_release(struct inode *inode, struct file *filp)
{
	spin_lock(&scull_u_lock);
	scull_u_count--;
	spin_unlock(&scull_u_lock);
	
	return 0;
}

struct file_operations scull_user_fops = 
{
	.owner	=	THIS_MODULE,
	.llseek	=	scull_llseek,
	.read	=	scull_read,
	.write	=	scull_write,
	.ioctl	=	scull_ioctl,
	.open	=	scull_u_open,
	.release=	scull_u_release,
};

/************************************************************************/
static struct scull_dev scull_w_device;
static int scull_w_count;	/* initialized to 0 by default */
static uid_t scull_w_owner;	/* initialized to 0 by default */
static DECLARE_WAIT_QUEUE_HEAD(scull_w_wait);
static spinlock_t scull_w_lock = SPIN_LOCK_UNLOCKED;

static inline int scull_w_available(void)
{
	return scull_w_count == 0 ||
		scull_w_owner	==	current->cred->uid ||
		scull_w_owner	==	current->cred->euid ||
		capable(CAP_DAC_OVERRIDE);
}

static  int scull_w_open(struct inode *inode, struct file *filp)
{
	struct scull_dev *dev = &scull_w_device;
	
	spin_lock(&scull_w_lock);
	while(!scull_w_available())
	{
		spin_unlock(&scull_w_lock);
		if(filp->f_flags & O_NONBLOCK)
			return -EAGAIN;
		if(wait_event_interruptible(scull_w_wait, scull_w_available()))
			return -ERESTARTSYS;
		spin_lock(&scull_w_lock);
	}
	
	if(scull_w_count == 0)
		scull_w_owner = current->cred->uid;
	scull_w_count++;
	spin_unlock(&scull_w_lock);
	
	if((filp->f_flags & O_ACCMODE) == O_WRONLY)
		scull_trim(dev);
	
	filp->private_data = dev;
	return 0;
}

static int scull_w_release(struct inode *inode, struct file *filp)
{
	int temp;
	
	spin_lock(&scull_w_lock);
	scull_w_count--;
	temp = scull_w_count;
	spin_unlock(&scull_w_lock);
	
	if(temp == 0)
		wake_up_interruptible_sync(&scull_w_wait);
	return 0;
}

struct file_operations scull_wusr_fops = 
{
	.owner	=	THIS_MODULE,
	.llseek	=	scull_llseek,
	.read	=	scull_read,
	.write	=	scull_write,
	.ioctl	=	scull_ioctl,
	.open	=	scull_w_open,
	.release=	scull_w_release,
};
/************************************************************************/
struct scull_listitem
{
	struct scull_dev device;
	dev_t key;
	struct list_head list;
};

static LIST_HEAD(scull_c_list);
static spinlock_t scull_c_lock = SPIN_LOCK_UNLOCKED;
static struct scull_dev scull_c_device;   

static struct scull_dev *scull_c_lookfor_device(dev_t key)
{
	struct scull_listitem *lptr;
	
	list_for_each_entry(lptr, &scull_c_list, list)
	{
		if(lptr->key == key)
			return &(lptr->device);
	}
	
	lptr = kmalloc(sizeof(struct scull_listitem), GFP_KERNEL);
	if(!lptr)
		return NULL;
	
	memset(lptr, 0, sizeof(struct scull_listitem));
	lptr->key = key;
	scull_trim(&(lptr->device));
	init_MUTEX(&(lptr->device.sem));
	
	list_add(&lptr->list, &scull_c_list);
	
	return &(lptr->device);
}

static int scull_c_open(struct inode *inode, struct file *filp)
{
	struct scull_dev *dev;
	dev_t key;
	
	if(!current->signal->tty)
	{
		PDEBUG("Process \"%s\" has no ctl tty\n", current->comm);
		return -EINVAL;
	}
	key = tty_devnum(current->signal->tty);
	
	spin_lock(&scull_c_lock);
	dev = scull_c_lookfor_device(key);
	spin_unlock(&scull_c_lock);
	
	if(!dev)
		return -ENOMEM;
	
	if((filp->f_flags & O_ACCMODE) == O_WRONLY)
		scull_trim(dev);
	filp->private_data = dev;
	return 0;
}

static int scull_c_release(struct inode *inode, struct file *filp)
{
	return 0;
}

struct file_operations scull_priv_fops =
{
	.owner	=	THIS_MODULE,
	.llseek = 	scull_llseek,
	.read	=	scull_read,
	.write	=	scull_write,
	.ioctl	=	scull_ioctl,
	.open	=	scull_c_open,
	.release=	scull_c_release,
};

static struct scull_adev_info
{
	char *name;
	struct scull_dev *sculldev;
	struct file_operations *fops;
}scull_access_devs[] = {
	{"scullsingle", &scull_s_device, &scull_sngl_fops},
	{"sculluid", &scull_u_device, &scull_user_fops},
	{"scullwuid", &scull_w_device, &scull_wusr_fops},
	{"sullpriv", &scull_c_device, &scull_priv_fops}
};

#define SCULL_N_ADEVS 4

static void scull_access_setup(dev_t devno, struct scull_adev_info *devinfo)
{
	struct scull_dev *dev = devinfo->sculldev;
	int err;
	
	dev->quantum = scull_quantum;
	dev->qset = scull_qset;
	init_MUTEX(&dev->sem);
	
	cdev_init(&dev->cdev, devinfo->fops);
	kobject_set_name(&dev->cdev.kobj, devinfo->name);
	dev->cdev.owner = THIS_MODULE;
	
	err = cdev_add(&dev->cdev, devno, 1);
	if(err)
	{
		printk(KERN_NOTICE "Error %d adding %s\n", err, devinfo->name);
		kobject_put(&dev->cdev.kobj);
	}
	else
	{
		printk(KERN_NOTICE "%s registered at %x\n", devinfo->name, devno);
	}
}

int scull_access_init(dev_t firstdev)
{
	int result, i;
	
	result = register_chrdev_region(firstdev, SCULL_N_ADEVS, "sculla");
	if(result<0)
	{
		printk(KERN_WARNING "sculla: device number registration failed\n");
		return 0;
	}
	scull_a_firstdev = firstdev;
	
	for(i=0; icdev);
		scull_trim(scull_access_devs[i].sculldev);
	}
	
	list_for_each_entry_safe(lptr, next, &scull_c_list, list)
	{
		list_del(&lptr->list);
		scull_trim(&(lptr->device));
		kfree(lptr);
	}
	
	unregister_chrdev_region(scull_a_firstdev, SCULL_N_ADEVS);
	return;
	
}

sched.h

#ifndef _LINUX_SCHED_H
#define _LINUX_SCHED_H

/*
 * cloning flags:
 */
#define CSIGNAL		0x000000ff	/* signal mask to be sent at exit */
#define CLONE_VM	0x00000100	/* set if VM shared between processes */
#define CLONE_FS	0x00000200	/* set if fs info shared between processes */
#define CLONE_FILES	0x00000400	/* set if open files shared between processes */
#define CLONE_SIGHAND	0x00000800	/* set if signal handlers and blocked signals shared */
#define CLONE_PTRACE	0x00002000	/* set if we want to let tracing continue on the child too */
#define CLONE_VFORK	0x00004000	/* set if the parent wants the child to wake it up on mm_release */
#define CLONE_PARENT	0x00008000	/* set if we want to have the same parent as the cloner */
#define CLONE_THREAD	0x00010000	/* Same thread group? */
#define CLONE_NEWNS	0x00020000	/* New namespace group? */
#define CLONE_SYSVSEM	0x00040000	/* share system V SEM_UNDO semantics */
#define CLONE_SETTLS	0x00080000	/* create a new TLS for the child */
#define CLONE_PARENT_SETTID	0x00100000	/* set the TID in the parent */
#define CLONE_CHILD_CLEARTID	0x00200000	/* clear the TID in the child */
#define CLONE_DETACHED		0x00400000	/* Unused, ignored */
#define CLONE_UNTRACED		0x00800000	/* set if the tracing process can't force CLONE_PTRACE on this clone */
#define CLONE_CHILD_SETTID	0x01000000	/* set the TID in the child */
#define CLONE_STOPPED		0x02000000	/* Start in stopped state */
#define CLONE_NEWUTS		0x04000000	/* New utsname group? */
#define CLONE_NEWIPC		0x08000000	/* New ipcs */
#define CLONE_NEWUSER		0x10000000	/* New user namespace */
#define CLONE_NEWPID		0x20000000	/* New pid namespace */
#define CLONE_NEWNET		0x40000000	/* New network namespace */
#define CLONE_IO		0x80000000	/* Clone io context */

/*
 * Scheduling policies
 */
#define SCHED_NORMAL		0
#define SCHED_FIFO		1
#define SCHED_RR		2
#define SCHED_BATCH		3
/* SCHED_ISO: reserved but not implemented yet */
#define SCHED_IDLE		5
/* Can be ORed in to make sure the process is reverted back to SCHED_NORMAL on fork */
#define SCHED_RESET_ON_FORK     0x40000000

#ifdef __KERNEL__

struct sched_param {
	int sched_priority;
};

#include 	/* for HZ */

#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 

#include 
#include 
#include 
#include 

#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 

#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 

#include 

struct exec_domain;
struct futex_pi_state;
struct robust_list_head;
struct bio;
struct fs_struct;
struct perf_event_context;

extern int exec_shield;
extern int print_fatal_signals;

/*
 * List of flags we want to share for kernel threads,
 * if only because they are not used by them anyway.
 */
#define CLONE_KERNEL	(CLONE_FS | CLONE_FILES | CLONE_SIGHAND)

/*
 * These are the constant used to fake the fixed-point load-average
 * counting. Some notes:
 *  - 11 bit fractions expand to 22 bits by the multiplies: this gives
 *    a load-average precision of 10 bits integer + 11 bits fractional
 *  - if you want to count load-averages more often, you need more
 *    precision, or rounding will get you. With 2-second counting freq,
 *    the EXP_n values would be 1981, 2034 and 2043 if still using only
 *    11 bit fractions.
 */
extern unsigned long avenrun[];		/* Load averages */
extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift);

#define FSHIFT		11		/* nr of bits of precision */
#define FIXED_1		(1<>= FSHIFT;

extern unsigned long total_forks;
extern int nr_threads;
DECLARE_PER_CPU(unsigned long, process_counts);
extern int nr_processes(void);
extern unsigned long nr_running(void);
extern unsigned long nr_uninterruptible(void);
extern unsigned long nr_iowait(void);
extern unsigned long nr_iowait_cpu(void);
extern unsigned long this_cpu_load(void);


extern void calc_global_load(void);

extern unsigned long get_parent_ip(unsigned long addr);

struct seq_file;
struct cfs_rq;
struct task_group;
#ifdef CONFIG_SCHED_DEBUG
extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
extern void proc_sched_set_task(struct task_struct *p);
extern void
print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
#else
static inline void
proc_sched_show_task(struct task_struct *p, struct seq_file *m)
{
}
static inline void proc_sched_set_task(struct task_struct *p)
{
}
static inline void
print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
{
}
#endif

extern unsigned long long time_sync_thresh;

/*
 * Task state bitmask. NOTE! These bits are also
 * encoded in fs/proc/array.c: get_task_state().
 *
 * We have two separate sets of flags: task->state
 * is about runnability, while task->exit_state are
 * about the task exiting. Confusing, but this way
 * modifying one set can't modify the other one by
 * mistake.
 */
#define TASK_RUNNING		0
#define TASK_INTERRUPTIBLE	1
#define TASK_UNINTERRUPTIBLE	2
#define __TASK_STOPPED		4
#define __TASK_TRACED		8
/* in tsk->exit_state */
#define EXIT_ZOMBIE		16
#define EXIT_DEAD		32
/* in tsk->state again */
#define TASK_DEAD		64
#define TASK_WAKEKILL		128
#define TASK_WAKING		256

/* Convenience macros for the sake of set_task_state */
#define TASK_KILLABLE		(TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
#define TASK_STOPPED		(TASK_WAKEKILL | __TASK_STOPPED)
#define TASK_TRACED		(TASK_WAKEKILL | __TASK_TRACED)

/* Convenience macros for the sake of wake_up */
#define TASK_NORMAL		(TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
#define TASK_ALL		(TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)

/* get_task_state() */
#define TASK_REPORT		(TASK_RUNNING | TASK_INTERRUPTIBLE | \
				 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
				 __TASK_TRACED)

#define task_is_traced(task)	((task->state & __TASK_TRACED) != 0)
#define task_is_stopped(task)	((task->state & __TASK_STOPPED) != 0)
#define task_is_stopped_or_traced(task)	\
			((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
#define task_contributes_to_load(task)	\
				((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
				 (task->flags & PF_FREEZING) == 0)

#define __set_task_state(tsk, state_value)		\
	do { (tsk)->state = (state_value); } while (0)
#define set_task_state(tsk, state_value)		\
	set_mb((tsk)->state, (state_value))

/*
 * set_current_state() includes a barrier so that the write of current->state
 * is correctly serialised wrt the caller's subsequent test of whether to
 * actually sleep:
 *
 *	set_current_state(TASK_UNINTERRUPTIBLE);
 *	if (do_i_need_to_sleep())
 *		schedule();
 *
 * If the caller does not need such serialisation then use __set_current_state()
 */
#define __set_current_state(state_value)			\
	do { current->state = (state_value); } while (0)
#define set_current_state(state_value)		\
	set_mb(current->state, (state_value))

/* Task command name length */
#define TASK_COMM_LEN 16

#include 

/*
 * This serializes "schedule()" and also protects
 * the run-queue from deletions/modifications (but
 * _adding_ to the beginning of the run-queue has
 * a separate lock).
 */
extern rwlock_t tasklist_lock;
extern spinlock_t mmlist_lock;

struct task_struct;

extern void sched_init(void);
extern void sched_init_smp(void);
extern asmlinkage void schedule_tail(struct task_struct *prev);
extern void init_idle(struct task_struct *idle, int cpu);
extern void init_idle_bootup_task(struct task_struct *idle);

extern int runqueue_is_locked(int cpu);
extern void task_rq_unlock_wait(struct task_struct *p);

extern cpumask_var_t nohz_cpu_mask;
#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ)
extern void select_nohz_load_balancer(int stop_tick);
extern int get_nohz_timer_target(void);
#else
static inline void select_nohz_load_balancer(int stop_tick) { }
#endif

/*
 * Only dump TASK_* tasks. (0 for all tasks)
 */
extern void show_state_filter(unsigned long state_filter);

static inline void show_state(void)
{
	show_state_filter(0);
}

extern void show_regs(struct pt_regs *);

/*
 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
 * task), SP is the stack pointer of the first frame that should be shown in the back
 * trace (or NULL if the entire call-chain of the task should be shown).
 */
extern void show_stack(struct task_struct *task, unsigned long *sp);

void io_schedule(void);
long io_schedule_timeout(long timeout);

extern void cpu_init (void);
extern void trap_init(void);
extern void update_process_times(int user);
extern void scheduler_tick(void);

extern void sched_show_task(struct task_struct *p);

#ifdef CONFIG_LOCKUP_DETECTOR
extern void touch_softlockup_watchdog(void);
extern void touch_all_softlockup_watchdogs(void);
extern int proc_dowatchdog_thresh(struct ctl_table *table, int write,
				  void __user *buffer,
				  size_t *lenp, loff_t *ppos);
extern unsigned int  softlockup_panic;
extern int softlockup_thresh;
void lockup_detector_init(void);
#else
static inline void touch_softlockup_watchdog(void)
{
}
static inline void touch_all_softlockup_watchdogs(void)
{
}
static inline void lockup_detector_init(void)
{
}
#endif

#ifdef CONFIG_DETECT_HUNG_TASK
extern unsigned int  sysctl_hung_task_panic;
extern unsigned long sysctl_hung_task_check_count;
extern unsigned long sysctl_hung_task_timeout_secs;
extern unsigned long sysctl_hung_task_warnings;
extern int proc_dohung_task_timeout_secs(struct ctl_table *table, int write,
					 void __user *buffer,
					 size_t *lenp, loff_t *ppos);
#endif

/* Attach to any functions which should be ignored in wchan output. */
#define __sched		__attribute__((__section__(".sched.text")))

/* Linker adds these: start and end of __sched functions */
extern char __sched_text_start[], __sched_text_end[];

/* Is this address in the __sched functions? */
extern int in_sched_functions(unsigned long addr);

#define	MAX_SCHEDULE_TIMEOUT	LONG_MAX
extern signed long schedule_timeout(signed long timeout);
extern signed long schedule_timeout_interruptible(signed long timeout);
extern signed long schedule_timeout_killable(signed long timeout);
extern signed long schedule_timeout_uninterruptible(signed long timeout);
asmlinkage void __schedule(void);
asmlinkage void schedule(void);
extern int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner);

struct nsproxy;
struct user_namespace;

/*
 * Default maximum number of active map areas, this limits the number of vmas
 * per mm struct. Users can overwrite this number by sysctl but there is a
 * problem.
 *
 * When a program's coredump is generated as ELF format, a section is created
 * per a vma. In ELF, the number of sections is represented in unsigned short.
 * This means the number of sections should be smaller than 65535 at coredump.
 * Because the kernel adds some informative sections to a image of program at
 * generating coredump, we need some margin. The number of extra sections is
 * 1-3 now and depends on arch. We use "5" as safe margin, here.
 */
#define MAPCOUNT_ELF_CORE_MARGIN	(5)
#define DEFAULT_MAX_MAP_COUNT	(USHORT_MAX - MAPCOUNT_ELF_CORE_MARGIN)

extern int sysctl_max_map_count;

#include 

extern unsigned long
arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
		       unsigned long, unsigned long);

extern unsigned long
arch_get_unmapped_exec_area(struct file *, unsigned long, unsigned long,
		       unsigned long, unsigned long);
extern unsigned long
arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
			  unsigned long len, unsigned long pgoff,
			  unsigned long flags);
extern void arch_unmap_area(struct mm_struct *, unsigned long);
extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long);

#if USE_SPLIT_PTLOCKS
/*
 * The mm counters are not protected by its page_table_lock,
 * so must be incremented atomically.
 */
#define set_mm_counter(mm, member, value) atomic_long_set(&(mm)->_##member, value)
#define get_mm_counter(mm, member) ((unsigned long)atomic_long_read(&(mm)->_##member))
#define add_mm_counter(mm, member, value) atomic_long_add(value, &(mm)->_##member)
#define inc_mm_counter(mm, member) atomic_long_inc(&(mm)->_##member)
#define dec_mm_counter(mm, member) atomic_long_dec(&(mm)->_##member)

#else  /* !USE_SPLIT_PTLOCKS */
/*
 * The mm counters are protected by its page_table_lock,
 * so can be incremented directly.
 */
#define set_mm_counter(mm, member, value) (mm)->_##member = (value)
#define get_mm_counter(mm, member) ((mm)->_##member)
#define add_mm_counter(mm, member, value) (mm)->_##member += (value)
#define inc_mm_counter(mm, member) (mm)->_##member++
#define dec_mm_counter(mm, member) (mm)->_##member--

#endif /* !USE_SPLIT_PTLOCKS */

#define get_mm_rss(mm)					\
	(get_mm_counter(mm, file_rss) + get_mm_counter(mm, anon_rss))
#define update_hiwater_rss(mm)	do {			\
	unsigned long _rss = get_mm_rss(mm);		\
	if ((mm)->hiwater_rss < _rss)			\
		(mm)->hiwater_rss = _rss;		\
} while (0)
#define update_hiwater_vm(mm)	do {			\
	if ((mm)->hiwater_vm < (mm)->total_vm)		\
		(mm)->hiwater_vm = (mm)->total_vm;	\
} while (0)

static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
{
	return max(mm->hiwater_rss, get_mm_rss(mm));
}

static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
					 struct mm_struct *mm)
{
	unsigned long hiwater_rss = get_mm_hiwater_rss(mm);

	if (*maxrss < hiwater_rss)
		*maxrss = hiwater_rss;
}

static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
{
	return max(mm->hiwater_vm, mm->total_vm);
}

extern void set_dumpable(struct mm_struct *mm, int value);
extern int get_dumpable(struct mm_struct *mm);

/* mm flags */
/* dumpable bits */
#define MMF_DUMPABLE      0  /* core dump is permitted */
#define MMF_DUMP_SECURELY 1  /* core file is readable only by root */

#define MMF_DUMPABLE_BITS 2
#define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1)

/* coredump filter bits */
#define MMF_DUMP_ANON_PRIVATE	2
#define MMF_DUMP_ANON_SHARED	3
#define MMF_DUMP_MAPPED_PRIVATE	4
#define MMF_DUMP_MAPPED_SHARED	5
#define MMF_DUMP_ELF_HEADERS	6
#define MMF_DUMP_HUGETLB_PRIVATE 7
#define MMF_DUMP_HUGETLB_SHARED  8

#define MMF_DUMP_FILTER_SHIFT	MMF_DUMPABLE_BITS
#define MMF_DUMP_FILTER_BITS	7
#define MMF_DUMP_FILTER_MASK \
	(((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
#define MMF_DUMP_FILTER_DEFAULT \
	((1 << MMF_DUMP_ANON_PRIVATE) |	(1 << MMF_DUMP_ANON_SHARED) |\
	 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)

#ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
# define MMF_DUMP_MASK_DEFAULT_ELF	(1 << MMF_DUMP_ELF_HEADERS)
#else
# define MMF_DUMP_MASK_DEFAULT_ELF	0
#endif
					/* leave room for more dump flags */
#define MMF_VM_MERGEABLE	16	/* KSM may merge identical pages */
#define MMF_VM_HUGEPAGE		17	/* set when VM_HUGEPAGE is set on vma */
#define MMF_COMPAT		18	/* this task runs in compat mode. */

#define MMF_INIT_MASK		\
	((1 << MMF_COMPAT) | MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK)

struct sighand_struct {
	atomic_t		count;
	struct k_sigaction	action[_NSIG];
	spinlock_t		siglock;
	wait_queue_head_t	signalfd_wqh;
};

struct pacct_struct {
	int			ac_flag;
	long			ac_exitcode;
	unsigned long		ac_mem;
	cputime_t		ac_utime, ac_stime;
	unsigned long		ac_minflt, ac_majflt;
};

struct cpu_itimer {
	cputime_t expires;
	cputime_t incr;
	u32 error;
	u32 incr_error;
};

/**
 * struct task_cputime - collected CPU time counts
 * @utime:		time spent in user mode, in &cputime_t units
 * @stime:		time spent in kernel mode, in &cputime_t units
 * @sum_exec_runtime:	total time spent on the CPU, in nanoseconds
 *
 * This structure groups together three kinds of CPU time that are
 * tracked for threads and thread groups.  Most things considering
 * CPU time want to group these counts together and treat all three
 * of them in parallel.
 */
struct task_cputime {
	cputime_t utime;
	cputime_t stime;
	unsigned long long sum_exec_runtime;
};
/* Alternate field names when used to cache expirations. */
#define prof_exp	stime
#define virt_exp	utime
#define sched_exp	sum_exec_runtime

#define INIT_CPUTIME	\
	(struct task_cputime) {					\
		.utime = cputime_zero,				\
		.stime = cputime_zero,				\
		.sum_exec_runtime = 0,				\
	}

/*
 * Disable preemption until the scheduler is running.
 * Reset by start_kernel()->sched_init()->init_idle().
 *
 * We include PREEMPT_ACTIVE to avoid cond_resched() from working
 * before the scheduler is active -- see should_resched().
 */
#define INIT_PREEMPT_COUNT	(1 + PREEMPT_ACTIVE)

/**
 * struct thread_group_cputimer - thread group interval timer counts
 * @cputime:		thread group interval timers.
 * @running:		non-zero when there are timers running and
 * 			@cputime receives updates.
 * @lock:		lock for fields in this struct.
 *
 * This structure contains the version of task_cputime, above, that is
 * used for thread group CPU timer calculations.
 */
struct thread_group_cputimer {
	struct task_cputime cputime;
	int running;
	spinlock_t lock;
};

struct autogroup;

/*
 * NOTE! "signal_struct" does not have it's own
 * locking, because a shared signal_struct always
 * implies a shared sighand_struct, so locking
 * sighand_struct is always a proper superset of
 * the locking of signal_struct.
 */
struct signal_struct {
	atomic_t		count;
	atomic_t		live;

	wait_queue_head_t	wait_chldexit;	/* for wait4() */

	/* current thread group signal load-balancing target: */
	struct task_struct	*curr_target;

	/* shared signal handling: */
	struct sigpending	shared_pending;

	/* thread group exit support */
	int			group_exit_code;
	/* overloaded:
	 * - notify group_exit_task when ->count is equal to notify_count
	 * - everyone except group_exit_task is stopped during signal delivery
	 *   of fatal signals, group_exit_task processes the signal.
	 */
	int			notify_count;
	struct task_struct	*group_exit_task;

	/* thread group stop support, overloads group_exit_code too */
	int			group_stop_count;
	unsigned int		flags; /* see SIGNAL_* flags below */

	/* POSIX.1b Interval Timers */
	struct list_head posix_timers;

	/* ITIMER_REAL timer for the process */
	struct hrtimer real_timer;
	struct pid *leader_pid;
	ktime_t it_real_incr;

	/*
	 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
	 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
	 * values are defined to 0 and 1 respectively
	 */
	struct cpu_itimer it[2];

	/*
	 * Thread group totals for process CPU timers.
	 * See thread_group_cputimer(), et al, for details.
	 */
	struct thread_group_cputimer cputimer;

	/* Earliest-expiration cache. */
	struct task_cputime cputime_expires;

	struct list_head cpu_timers[3];

	struct pid *tty_old_pgrp;

	/* boolean value for session group leader */
	int leader;

	struct tty_struct *tty; /* NULL if no tty */

	/*
	 * Cumulative resource counters for dead threads in the group,
	 * and for reaped dead child processes forked by this group.
	 * Live threads maintain their own counters and add to these
	 * in __exit_signal, except for the group leader.
	 */
	cputime_t utime, stime, cutime, cstime;
	cputime_t gtime;
	cputime_t cgtime;
	unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
	unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
	unsigned long inblock, oublock, cinblock, coublock;
	unsigned long maxrss, cmaxrss;
	struct task_io_accounting ioac;

	/*
	 * Cumulative ns of schedule CPU time fo dead threads in the
	 * group, not including a zombie group leader, (This only differs
	 * from jiffies_to_ns(utime + stime) if sched_clock uses something
	 * other than jiffies.)
	 */
	unsigned long long sum_sched_runtime;

	/*
	 * We don't bother to synchronize most readers of this at all,
	 * because there is no reader checking a limit that actually needs
	 * to get both rlim_cur and rlim_max atomically, and either one
	 * alone is a single word that can safely be read normally.
	 * getrlimit/setrlimit use task_lock(current->group_leader) to
	 * protect this instead of the siglock, because they really
	 * have no need to disable irqs.
	 */
	struct rlimit rlim[RLIM_NLIMITS];

#ifdef CONFIG_BSD_PROCESS_ACCT
	struct pacct_struct pacct;	/* per-process accounting information */
#endif
#ifdef CONFIG_TASKSTATS
	struct taskstats *stats;
#endif
#ifdef CONFIG_AUDIT
	unsigned audit_tty;
	struct tty_audit_buf *tty_audit_buf;
#endif

	int oom_adj;		/* OOM kill score adjustment (bit shift) */
	/* reserved for Red Hat */
	unsigned long rh_reserved;

#ifdef CONFIG_SCHED_AUTOGROUP
#ifndef __GENKSYMS__
	struct autogroup *autogroup;
#endif
#endif

#ifndef __GENKSYMS__
	int oom_score_adj;	/* OOM kill score adjustment */
	int oom_score_adj_min;	/* OOM kill score adjustment minimum value.
				 * Only settable by CAP_SYS_RESOURCE. */
#endif
};

/* Context switch must be unlocked if interrupts are to be enabled */
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
# define __ARCH_WANT_UNLOCKED_CTXSW
#endif

/*
 * Bits in flags field of signal_struct.
 */
#define SIGNAL_STOP_STOPPED	0x00000001 /* job control stop in effect */
#define SIGNAL_STOP_DEQUEUED	0x00000002 /* stop signal dequeued */
#define SIGNAL_STOP_CONTINUED	0x00000004 /* SIGCONT since WCONTINUED reap */
#define SIGNAL_GROUP_EXIT	0x00000008 /* group exit in progress */
/*
 * Pending notifications to parent.
 */
#define SIGNAL_CLD_STOPPED	0x00000010
#define SIGNAL_CLD_CONTINUED	0x00000020
#define SIGNAL_CLD_MASK		(SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)

#define SIGNAL_UNKILLABLE	0x00000040 /* for init: ignore fatal signals */

/* If true, all threads except ->group_exit_task have pending SIGKILL */
static inline int signal_group_exit(const struct signal_struct *sig)
{
	return	(sig->flags & SIGNAL_GROUP_EXIT) ||
		(sig->group_exit_task != NULL);
}

/*
 * Some day this will be a full-fledged user tracking system..
 */
struct user_struct {
	atomic_t __count;	/* reference count */
	atomic_t processes;	/* How many processes does this user have? */
	atomic_t files;		/* How many open files does this user have? */
	atomic_t sigpending;	/* How many pending signals does this user have? */
#ifdef CONFIG_INOTIFY_USER
	atomic_t inotify_watches; /* How many inotify watches does this user have? */
	atomic_t inotify_devs;	/* How many inotify devs does this user have opened? */
#endif
#ifdef CONFIG_EPOLL
	atomic_t epoll_watches;	/* The number of file descriptors currently watched */
#endif
#ifdef CONFIG_POSIX_MQUEUE
	/* protected by mq_lock	*/
	unsigned long mq_bytes;	/* How many bytes can be allocated to mqueue? */
#endif
	unsigned long locked_shm; /* How many pages of mlocked shm ? */

#ifdef CONFIG_KEYS
	struct key *uid_keyring;	/* UID specific keyring */
	struct key *session_keyring;	/* UID's default session keyring */
#endif

	/* Hash table maintenance information */
	struct hlist_node uidhash_node;
	uid_t uid;
	struct user_namespace *user_ns;

#ifdef CONFIG_USER_SCHED
	struct task_group *tg;
#ifdef CONFIG_SYSFS
	struct kobject kobj;
	struct delayed_work work;
#endif
#endif

#ifdef CONFIG_PERF_EVENTS
	atomic_long_t locked_vm;
#endif
};

extern int uids_sysfs_init(void);

extern struct user_struct *find_user(uid_t);

extern struct user_struct root_user;
#define INIT_USER (&root_user)


struct backing_dev_info;
struct reclaim_state;

#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
struct sched_info {
	/* cumulative counters */
	unsigned long pcount;	      /* # of times run on this cpu */
	unsigned long long run_delay; /* time spent waiting on a runqueue */

	/* timestamps */
	unsigned long long last_arrival,/* when we last ran on a cpu */
			   last_queued;	/* when we were last queued to run */
#ifdef CONFIG_SCHEDSTATS
	/* BKL stats */
	unsigned int bkl_count;
#endif
};
#endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */

#ifdef CONFIG_TASK_DELAY_ACCT
struct task_delay_info {
	spinlock_t	lock;
	unsigned int	flags;	/* Private per-task flags */

	/* For each stat XXX, add following, aligned appropriately
	 *
	 * struct timespec XXX_start, XXX_end;
	 * u64 XXX_delay;
	 * u32 XXX_count;
	 *
	 * Atomicity of updates to XXX_delay, XXX_count protected by
	 * single lock above (split into XXX_lock if contention is an issue).
	 */

	/*
	 * XXX_count is incremented on every XXX operation, the delay
	 * associated with the operation is added to XXX_delay.
	 * XXX_delay contains the accumulated delay time in nanoseconds.
	 */
	struct timespec blkio_start, blkio_end;	/* Shared by blkio, swapin */
	u64 blkio_delay;	/* wait for sync block io completion */
	u64 swapin_delay;	/* wait for swapin block io completion */
	u32 blkio_count;	/* total count of the number of sync block */
				/* io operations performed */
	u32 swapin_count;	/* total count of the number of swapin block */
				/* io operations performed */

	struct timespec freepages_start, freepages_end;
	u64 freepages_delay;	/* wait for memory reclaim */
	u32 freepages_count;	/* total count of memory reclaim */
};
#endif	/* CONFIG_TASK_DELAY_ACCT */

static inline int sched_info_on(void)
{
#ifdef CONFIG_SCHEDSTATS
	return 1;
#elif defined(CONFIG_TASK_DELAY_ACCT)
	extern int delayacct_on;
	return delayacct_on;
#else
	return 0;
#endif
}

enum cpu_idle_type {
	CPU_IDLE,
	CPU_NOT_IDLE,
	CPU_NEWLY_IDLE,
	CPU_MAX_IDLE_TYPES
};

/*
 * sched-domains (multiprocessor balancing) declarations:
 */

/*
 * Increase resolution of nice-level calculations:
 */
#define SCHED_LOAD_SHIFT	10
#define SCHED_LOAD_SCALE	(1L << SCHED_LOAD_SHIFT)

#define SCHED_LOAD_SCALE_FUZZ	SCHED_LOAD_SCALE

#ifdef CONFIG_SMP
#define SD_LOAD_BALANCE		0x0001	/* Do load balancing on this domain. */
#define SD_BALANCE_NEWIDLE	0x0002	/* Balance when about to become idle */
#define SD_BALANCE_EXEC		0x0004	/* Balance on exec */
#define SD_BALANCE_FORK		0x0008	/* Balance on fork, clone */
#define SD_BALANCE_WAKE		0x0010  /* Balance on wakeup */
#define SD_WAKE_AFFINE		0x0020	/* Wake task to waking CPU */
#define SD_PREFER_LOCAL		0x0040  /* Prefer to keep tasks local to this domain */
#define SD_SHARE_CPUPOWER	0x0080	/* Domain members share cpu power */
#define SD_POWERSAVINGS_BALANCE	0x0100	/* Balance for power savings */
#define SD_SHARE_PKG_RESOURCES	0x0200	/* Domain members share cpu pkg resources */
#define SD_SERIALIZE		0x0400	/* Only a single load balancing instance */
#define SD_ASYM_PACKING		0x0800  /* Place busy groups earlier in the domain */
#define SD_PREFER_SIBLING	0x1000	/* Prefer to place tasks in a sibling domain */

enum powersavings_balance_level {
	POWERSAVINGS_BALANCE_NONE = 0,  /* No power saving load balance */
	POWERSAVINGS_BALANCE_BASIC,	/* Fill one thread/core/package
					 * first for long running threads
					 */
	POWERSAVINGS_BALANCE_WAKEUP,	/* Also bias task wakeups to semi-idle
					 * cpu package for power savings
					 */
	MAX_POWERSAVINGS_BALANCE_LEVELS
};

extern int sched_mc_power_savings, sched_smt_power_savings;

static inline int sd_balance_for_mc_power(void)
{
	if (sched_smt_power_savings)
		return SD_POWERSAVINGS_BALANCE;

	if (!sched_mc_power_savings)
		return SD_PREFER_SIBLING;

	return 0;
}

static inline int sd_balance_for_package_power(void)
{
	if (sched_mc_power_savings | sched_smt_power_savings)
		return SD_POWERSAVINGS_BALANCE;

	return SD_PREFER_SIBLING;
}

extern int __weak arch_sd_sibling_asym_packing(void);

/*
 * Optimise SD flags for power savings:
 * SD_BALANCE_NEWIDLE helps agressive task consolidation and power savings.
 * Keep default SD flags if sched_{smt,mc}_power_saving=0
 */

static inline int sd_power_saving_flags(void)
{
	if (sched_mc_power_savings | sched_smt_power_savings)
		return SD_BALANCE_NEWIDLE;

	return 0;
}

struct sched_group {
	struct sched_group *next;	/* Must be a circular list */

	/*
	 * CPU power of this group, SCHED_LOAD_SCALE being max power for a
	 * single CPU.
	 */
	unsigned int cpu_power, cpu_power_orig;

	/*
	 * The CPUs this group covers.
	 *
	 * NOTE: this field is variable length. (Allocated dynamically
	 * by attaching extra space to the end of the structure,
	 * depending on how many CPUs the kernel has booted up with)
	 *
	 * It is also be embedded into static data structures at build
	 * time. (See 'struct static_sched_group' in kernel/sched.c)
	 */
	unsigned long cpumask[0];
};

static inline struct cpumask *sched_group_cpus(struct sched_group *sg)
{
	return to_cpumask(sg->cpumask);
}

enum sched_domain_level {
	SD_LV_NONE = 0,
	SD_LV_SIBLING,
	SD_LV_MC,
#ifndef __GENKSYMS__
	SD_LV_BOOK,
#endif
	SD_LV_CPU,
	SD_LV_NODE,
	SD_LV_ALLNODES,
	SD_LV_MAX
};

struct sched_domain_attr {
	int relax_domain_level;
};

#define SD_ATTR_INIT	(struct sched_domain_attr) {	\
	.relax_domain_level = -1,			\
}

struct sched_domain {
	/* These fields must be setup */
	struct sched_domain *parent;	/* top domain must be null terminated */
	struct sched_domain *child;	/* bottom domain must be null terminated */
	struct sched_group *groups;	/* the balancing groups of the domain */
	unsigned long min_interval;	/* Minimum balance interval ms */
	unsigned long max_interval;	/* Maximum balance interval ms */
	unsigned int busy_factor;	/* less balancing by factor if busy */
	unsigned int imbalance_pct;	/* No balance until over watermark */
	unsigned int cache_nice_tries;	/* Leave cache hot tasks for # tries */
	unsigned int busy_idx;
	unsigned int idle_idx;
	unsigned int newidle_idx;
	unsigned int wake_idx;
	unsigned int forkexec_idx;
	unsigned int smt_gain;
	int flags;			/* See SD_* */
	enum sched_domain_level level;

	/* Runtime fields. */
	unsigned long last_balance;	/* init to jiffies. units in jiffies */
	unsigned int balance_interval;	/* initialise to 1. units in ms. */
	unsigned int nr_balance_failed; /* initialise to 0 */

	u64 last_update;

#ifdef CONFIG_SCHEDSTATS
	/* load_balance() stats */
	unsigned int lb_count[CPU_MAX_IDLE_TYPES];
	unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
	unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
	unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
	unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
	unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
	unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
	unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];

	/* Active load balancing */
	unsigned int alb_count;
	unsigned int alb_failed;
	unsigned int alb_pushed;

	/* SD_BALANCE_EXEC stats */
	unsigned int sbe_count;
	unsigned int sbe_balanced;
	unsigned int sbe_pushed;

	/* SD_BALANCE_FORK stats */
	unsigned int sbf_count;
	unsigned int sbf_balanced;
	unsigned int sbf_pushed;

	/* try_to_wake_up() stats */
	unsigned int ttwu_wake_remote;
	unsigned int ttwu_move_affine;
	unsigned int ttwu_move_balance;
#endif
#ifdef CONFIG_SCHED_DEBUG
	char *name;
#endif

#ifndef __GENKSYMS__
	unsigned int span_weight;
#endif
	/*
	 * Span of all CPUs in this domain.
	 *
	 * NOTE: this field is variable length. (Allocated dynamically
	 * by attaching extra space to the end of the structure,
	 * depending on how many CPUs the kernel has booted up with)
	 *
	 * It is also be embedded into static data structures at build
	 * time. (See 'struct static_sched_domain' in kernel/sched.c)
	 */
	unsigned long span[0];
};

static inline struct cpumask *sched_domain_span(struct sched_domain *sd)
{
	return to_cpumask(sd->span);
}

extern void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
				    struct sched_domain_attr *dattr_new);

/* Test a flag in parent sched domain */
static inline int test_sd_parent(struct sched_domain *sd, int flag)
{
	if (sd->parent && (sd->parent->flags & flag))
		return 1;

	return 0;
}

unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu);
unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu);

#else /* CONFIG_SMP */

struct sched_domain_attr;

static inline void
partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
			struct sched_domain_attr *dattr_new)
{
}
#endif	/* !CONFIG_SMP */


struct io_context;			/* See blkdev.h */


#ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
extern void prefetch_stack(struct task_struct *t);
#else
static inline void prefetch_stack(struct task_struct *t) { }
#endif

struct audit_context;		/* See audit.c */
struct mempolicy;
struct pipe_inode_info;
struct uts_namespace;

struct rq;
struct sched_domain;

/*
 * wake flags
 */
#define WF_SYNC		0x01		/* waker goes to sleep after wakup */
#define WF_FORK		0x02		/* child wakeup after fork */

#define ENQUEUE_WAKEUP		1
#define ENQUEUE_WAKING		2
#define ENQUEUE_HEAD		4

#define DEQUEUE_SLEEP		1

struct sched_class {
	const struct sched_class *next;

#ifndef __GENKSYMS__
	void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
	void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
#else
	void (*enqueue_task) (struct rq *rq, struct task_struct *p, int wakeup);
	void (*dequeue_task) (struct rq *rq, struct task_struct *p, int sleep);
#endif

	void (*yield_task) (struct rq *rq);

	void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags);

	struct task_struct * (*pick_next_task) (struct rq *rq);
	void (*put_prev_task) (struct rq *rq, struct task_struct *p);

#ifdef CONFIG_SMP
#ifndef __GENKSYMS__
	int  (*select_task_rq)(struct rq *rq, struct task_struct *p,
			       int sd_flag, int flags);
#else
	int  (*select_task_rq)(struct task_struct *p, int sd_flag, int flags);
#endif
	unsigned long (*load_balance) (struct rq *this_rq, int this_cpu,
			struct rq *busiest, unsigned long max_load_move,
			struct sched_domain *sd, enum cpu_idle_type idle,
			int *all_pinned, int *this_best_prio);

	int (*move_one_task) (struct rq *this_rq, int this_cpu,
			      struct rq *busiest, struct sched_domain *sd,
			      enum cpu_idle_type idle);
	void (*pre_schedule) (struct rq *this_rq, struct task_struct *task);
	void (*post_schedule) (struct rq *this_rq);
#ifndef __GENKSYMS__
	void (*task_waking) (struct rq *this_rq, struct task_struct *task);
	void (*task_woken) (struct rq *this_rq, struct task_struct *task);
#else
	void (*task_wake_up) (struct rq *this_rq, struct task_struct *task);
#endif
	void (*set_cpus_allowed)(struct task_struct *p,
				 const struct cpumask *newmask);

	void (*rq_online)(struct rq *rq);
	void (*rq_offline)(struct rq *rq);
#endif

	void (*set_curr_task) (struct rq *rq);
	void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
#ifndef __GENKSYMS__
	void (*task_fork) (struct task_struct *p);
#else
	void (*task_new) (struct rq *rq, struct task_struct *p);
#endif
	void (*switched_from) (struct rq *this_rq, struct task_struct *task,
			       int running);
	void (*switched_to) (struct rq *this_rq, struct task_struct *task,
			     int running);
	void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
			     int oldprio, int running);
#ifndef __GENKSYMS__
	unsigned int (*get_rr_interval) (struct rq *rq,
					 struct task_struct *task);
#else
	unsigned int (*get_rr_interval) (struct task_struct *task);
#endif
#ifdef CONFIG_FAIR_GROUP_SCHED
#ifndef __GENKSYMS__
	void (*moved_group) (struct task_struct *p, int on_rq);
#else
	void (*moved_group) (struct task_struct *p);
#endif
#endif

#ifndef __GENKSYMS__
	bool (*yield_to_task) (struct rq *rq, struct task_struct *p, bool preempt);
#endif
};

struct load_weight {
	unsigned long weight, inv_weight;
};

/*
 * CFS stats for a schedulable entity (task, task-group etc)
 *
 * Current field usage histogram:
 *
 *     4 se->block_start
 *     4 se->run_node
 *     4 se->sleep_start
 *     6 se->load.weight
 */
struct sched_entity {
	struct load_weight	load;		/* for load-balancing */
	struct rb_node		run_node;
	struct list_head	group_node;
	unsigned int		on_rq;

	u64			exec_start;
	u64			sum_exec_runtime;
	u64			vruntime;
	u64			prev_sum_exec_runtime;

	u64			last_wakeup;	/* unused */
	u64			avg_overlap;	/* unused */

	u64			nr_migrations;

	u64			start_runtime;	/* unused */
	u64			avg_wakeup;	/* unused */

	u64			avg_running;	/* unused */

#ifdef CONFIG_SCHEDSTATS
	u64			wait_start;
	u64			wait_max;
	u64			wait_count;
	u64			wait_sum;
	u64			iowait_count;
	u64			iowait_sum;

	u64			sleep_start;
	u64			sleep_max;
	s64			sum_sleep_runtime;

	u64			block_start;
	u64			block_max;
	u64			exec_max;
	u64			slice_max;

	u64			nr_migrations_cold;
	u64			nr_failed_migrations_affine;
	u64			nr_failed_migrations_running;
	u64			nr_failed_migrations_hot;
	u64			nr_forced_migrations;
	u64			nr_forced2_migrations;	/* unused */

	u64			nr_wakeups;
	u64			nr_wakeups_sync;
	u64			nr_wakeups_migrate;
	u64			nr_wakeups_local;
	u64			nr_wakeups_remote;
	u64			nr_wakeups_affine;
	u64			nr_wakeups_affine_attempts;
	u64			nr_wakeups_passive;
	u64			nr_wakeups_idle;
#endif

#ifdef CONFIG_FAIR_GROUP_SCHED
	struct sched_entity	*parent;
	/* rq on which this entity is (to be) queued: */
	struct cfs_rq		*cfs_rq;
	/* rq "owned" by this entity/group: */
	struct cfs_rq		*my_q;
#endif
	/* reserved for Red Hat */
	unsigned long 		rh_reserved;
};

struct sched_rt_entity {
	struct list_head run_list;
	unsigned long timeout;
	unsigned int time_slice;
	int nr_cpus_allowed;

	struct sched_rt_entity *back;
#ifdef CONFIG_RT_GROUP_SCHED
	struct sched_rt_entity	*parent;
	/* rq on which this entity is (to be) queued: */
	struct rt_rq		*rt_rq;
	/* rq "owned" by this entity/group: */
	struct rt_rq		*my_q;
#endif
};

struct rcu_node;

enum perf_event_task_context {
	perf_invalid_context = -1,
	perf_hw_context = 0,
	perf_sw_context,
	perf_nr_task_contexts,
};

struct task_struct {
	volatile long state;	/* -1 unrunnable, 0 runnable, >0 stopped */
	void *stack;
	atomic_t usage;
	unsigned int flags;	/* per process flags, defined below */
	unsigned int ptrace;

	int lock_depth;		/* BKL lock depth */

#ifdef CONFIG_SMP
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	int oncpu;
#endif
#endif

	int prio, static_prio, normal_prio;
	unsigned int rt_priority;
	const struct sched_class *sched_class;
	struct sched_entity se;
	struct sched_rt_entity rt;

#ifdef CONFIG_PREEMPT_NOTIFIERS
	/* list of struct preempt_notifier: */
	struct hlist_head preempt_notifiers;
#endif

	/*
	 * fpu_counter contains the number of consecutive context switches
	 * that the FPU is used. If this is over a threshold, the lazy fpu
	 * saving becomes unlazy to save the trap. This is an unsigned char
	 * so that after 256 times the counter wraps and the behavior turns
	 * lazy again; this to deal with bursty apps that only use FPU for
	 * a short time
	 */
	unsigned char fpu_counter;
#ifdef CONFIG_BLK_DEV_IO_TRACE
	unsigned int btrace_seq;
#endif

	unsigned int policy;
	cpumask_t cpus_allowed;

#ifdef CONFIG_TREE_PREEMPT_RCU
	int rcu_read_lock_nesting;
	char rcu_read_unlock_special;
	struct rcu_node *rcu_blocked_node;
	struct list_head rcu_node_entry;
#endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */

#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
	struct sched_info sched_info;
#endif

	struct list_head tasks;
	struct plist_node pushable_tasks;

	struct mm_struct *mm, *active_mm;

/* task state */
	int exit_state;
	int exit_code, exit_signal;
	int pdeath_signal;  /*  The signal sent when the parent dies  */
	/* ??? */
	unsigned int personality;
	unsigned did_exec:1;
	unsigned in_execve:1;	/* Tell the LSMs that the process is doing an
				 * execve */
	unsigned in_iowait:1;


	/* Revert to default priority/policy when forking */
	unsigned sched_reset_on_fork:1;

	pid_t pid;
	pid_t tgid;

#ifdef CONFIG_CC_STACKPROTECTOR
	/* Canary value for the -fstack-protector gcc feature */
	unsigned long stack_canary;
#endif

	/*
	 * pointers to (original) parent process, youngest child, younger sibling,
	 * older sibling, respectively.  (p->father can be replaced with
	 * p->real_parent->pid)
	 */
	struct task_struct *real_parent; /* real parent process */
	struct task_struct *parent; /* recipient of SIGCHLD, wait4() reports */
	/*
	 * children/sibling forms the list of my natural children
	 */
	struct list_head children;	/* list of my children */
	struct list_head sibling;	/* linkage in my parent's children list */
	struct task_struct *group_leader;	/* threadgroup leader */

	/*
	 * ptraced is the list of tasks this task is using ptrace on.
	 * This includes both natural children and PTRACE_ATTACH targets.
	 * p->ptrace_entry is p's link on the p->parent->ptraced list.
	 */
	struct list_head ptraced;
	struct list_head ptrace_entry;

	/* PID/PID hash table linkage. */
	struct pid_link pids[PIDTYPE_MAX];
	struct list_head thread_group;

	struct completion *vfork_done;		/* for vfork() */
	int __user *set_child_tid;		/* CLONE_CHILD_SETTID */
	int __user *clear_child_tid;		/* CLONE_CHILD_CLEARTID */

	cputime_t utime, stime, utimescaled, stimescaled;
	cputime_t gtime;
	cputime_t prev_utime, prev_stime;
	unsigned long nvcsw, nivcsw; /* context switch counts */
	struct timespec start_time; 		/* monotonic time */
	struct timespec real_start_time;	/* boot based time */
/* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
	unsigned long min_flt, maj_flt;

	struct task_cputime cputime_expires;
	struct list_head cpu_timers[3];

/* process credentials */
	const struct cred *real_cred;	/* objective and real subjective task
					 * credentials (COW) */
	const struct cred *cred;	/* effective (overridable) subjective task
					 * credentials (COW) */
	struct mutex cred_guard_mutex;	/* guard against foreign influences on
					 * credential calculations
					 * (notably. ptrace) */
	struct cred *replacement_session_keyring; /* for KEYCTL_SESSION_TO_PARENT */

	char comm[TASK_COMM_LEN]; /* executable name excluding path
				     - access with [gs]et_task_comm (which lock
				       it with task_lock())
				     - initialized normally by setup_new_exec */
/* file system info */
	int link_count, total_link_count;
#ifdef CONFIG_SYSVIPC
/* ipc stuff */
	struct sysv_sem sysvsem;
#endif
#ifdef CONFIG_DETECT_HUNG_TASK
/* hung task detection */
	unsigned long last_switch_count;
#endif
/* CPU-specific state of this task */
	struct thread_struct thread;
/* filesystem information */
	struct fs_struct *fs;
/* open file information */
	struct files_struct *files;
/* namespaces */
	struct nsproxy *nsproxy;
/* signal handlers */
	struct signal_struct *signal;
	struct sighand_struct *sighand;

	sigset_t blocked, real_blocked;
	sigset_t saved_sigmask;	/* restored if set_restore_sigmask() was used */
	struct sigpending pending;

	unsigned long sas_ss_sp;
	size_t sas_ss_size;
	int (*notifier)(void *priv);
	void *notifier_data;
	sigset_t *notifier_mask;
	struct audit_context *audit_context;
#ifdef CONFIG_AUDITSYSCALL
	uid_t loginuid;
	unsigned int sessionid;
#endif
	seccomp_t seccomp;

#ifdef CONFIG_UTRACE
	struct utrace *utrace;
	unsigned long utrace_flags;
#endif

/* Thread group tracking */
   	u32 parent_exec_id;
   	u32 self_exec_id;
/* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed,
 * mempolicy */
	spinlock_t alloc_lock;

#ifdef CONFIG_GENERIC_HARDIRQS
	/* IRQ handler threads */
	struct irqaction *irqaction;
#endif

	/* Protection of the PI data structures: */
	spinlock_t pi_lock;

#ifdef CONFIG_RT_MUTEXES
	/* PI waiters blocked on a rt_mutex held by this task */
	struct plist_head pi_waiters;
	/* Deadlock detection and priority inheritance handling */
	struct rt_mutex_waiter *pi_blocked_on;
#endif

#ifdef CONFIG_DEBUG_MUTEXES
	/* mutex deadlock detection */
	struct mutex_waiter *blocked_on;
#endif
#ifdef CONFIG_TRACE_IRQFLAGS
	unsigned int irq_events;
	int hardirqs_enabled;
	unsigned long hardirq_enable_ip;
	unsigned int hardirq_enable_event;
	unsigned long hardirq_disable_ip;
	unsigned int hardirq_disable_event;
	int softirqs_enabled;
	unsigned long softirq_disable_ip;
	unsigned int softirq_disable_event;
	unsigned long softirq_enable_ip;
	unsigned int softirq_enable_event;
	int hardirq_context;
	int softirq_context;
#endif
#ifdef CONFIG_LOCKDEP
# define MAX_LOCK_DEPTH 48UL
	u64 curr_chain_key;
	int lockdep_depth;
	unsigned int lockdep_recursion;
	struct held_lock held_locks[MAX_LOCK_DEPTH];
	gfp_t lockdep_reclaim_gfp;
#endif

/* journalling filesystem info */
	void *journal_info;

/* stacked block device info */
	struct bio *bio_list, **bio_tail;

/* VM state */
	struct reclaim_state *reclaim_state;

	struct backing_dev_info *backing_dev_info;

	struct io_context *io_context;

	unsigned long ptrace_message;
	siginfo_t *last_siginfo; /* For ptrace use.  */
	struct task_io_accounting ioac;
#if defined(CONFIG_TASK_XACCT)
	u64 acct_rss_mem1;	/* accumulated rss usage */
	u64 acct_vm_mem1;	/* accumulated virtual memory usage */
	cputime_t acct_timexpd;	/* stime + utime since last update */
#endif
#ifdef CONFIG_CPUSETS
	nodemask_t mems_allowed;	/* Protected by alloc_lock */
#ifndef __GENKSYMS__
	/*
	 * This does not change the size of the struct_task(2+2+4=4+4)
	 * so the offsets of the remaining fields are unchanged and 
	 * therefore the kABI is preserved.  Only the kernel uses
	 * cpuset_mem_spread_rotor and cpuset_slab_spread_rotor so
	 * it is safe to change it to use shorts instead of ints.
	 */   
	unsigned short cpuset_mem_spread_rotor;
	unsigned short cpuset_slab_spread_rotor;
	int mems_allowed_change_disable;
#else
	int cpuset_mem_spread_rotor;
	int cpuset_slab_spread_rotor;
#endif
#endif
#ifdef CONFIG_CGROUPS
	/* Control Group info protected by css_set_lock */
	struct css_set *cgroups;
	/* cg_list protected by css_set_lock and tsk->alloc_lock */
	struct list_head cg_list;
#endif
#ifdef CONFIG_FUTEX
	struct robust_list_head __user *robust_list;
#ifdef CONFIG_COMPAT
	struct compat_robust_list_head __user *compat_robust_list;
#endif
	struct list_head pi_state_list;
	struct futex_pi_state *pi_state_cache;
#endif
#ifdef CONFIG_PERF_EVENTS
#ifndef __GENKSYMS__
	void * __reserved_perf__;
#else
	struct perf_event_context *perf_event_ctxp;
#endif
	struct mutex perf_event_mutex;
	struct list_head perf_event_list;
#endif
#ifdef CONFIG_NUMA
	struct mempolicy *mempolicy;	/* Protected by alloc_lock */
	short il_next;
#endif
	atomic_t fs_excl;	/* holding fs exclusive resources */
	struct rcu_head rcu;

	/*
	 * cache last used pipe for splice
	 */
	struct pipe_inode_info *splice_pipe;
#ifdef	CONFIG_TASK_DELAY_ACCT
	struct task_delay_info *delays;
#endif
#ifdef CONFIG_FAULT_INJECTION
	int make_it_fail;
#endif
	struct prop_local_single dirties;
#ifdef CONFIG_LATENCYTOP
	int latency_record_count;
	struct latency_record latency_record[LT_SAVECOUNT];
#endif
	/*
	 * time slack values; these are used to round up poll() and
	 * select() etc timeout values. These are in nanoseconds.
	 */
	unsigned long timer_slack_ns;
	unsigned long default_timer_slack_ns;

	struct list_head	*scm_work_list;
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
	/* Index of current stored adress in ret_stack */
	int curr_ret_stack;
	/* Stack of return addresses for return function tracing */
	struct ftrace_ret_stack	*ret_stack;
	/* time stamp for last schedule */
	unsigned long long ftrace_timestamp;
	/*
	 * Number of functions that haven't been traced
	 * because of depth overrun.
	 */
	atomic_t trace_overrun;
	/* Pause for the tracing */
	atomic_t tracing_graph_pause;
#endif
#ifdef CONFIG_TRACING
	/* state flags for use by tracers */
	unsigned long trace;
	/* bitmask of trace recursion */
	unsigned long trace_recursion;
#endif /* CONFIG_TRACING */
	/* reserved for Red Hat */
	unsigned long rh_reserved[2];
#ifndef __GENKSYMS__
	struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
#endif
};

/* Future-safe accessor for struct task_struct's cpus_allowed. */
#define tsk_cpumask(tsk) (&(tsk)->cpus_allowed)

/*
 * Priority of a process goes from 0..MAX_PRIO-1, valid RT
 * priority is 0..MAX_RT_PRIO-1, and SCHED_NORMAL/SCHED_BATCH
 * tasks are in the range MAX_RT_PRIO..MAX_PRIO-1. Priority
 * values are inverted: lower p->prio value means higher priority.
 *
 * The MAX_USER_RT_PRIO value allows the actual maximum
 * RT priority to be separate from the value exported to
 * user-space.  This allows kernel threads to set their
 * priority to a value higher than any user task. Note:
 * MAX_RT_PRIO must not be smaller than MAX_USER_RT_PRIO.
 */

#define MAX_USER_RT_PRIO	100
#define MAX_RT_PRIO		MAX_USER_RT_PRIO

#define MAX_PRIO		(MAX_RT_PRIO + 40)
#define DEFAULT_PRIO		(MAX_RT_PRIO + 20)

static inline int rt_prio(int prio)
{
	if (unlikely(prio < MAX_RT_PRIO))
		return 1;
	return 0;
}

static inline int rt_task(struct task_struct *p)
{
	return rt_prio(p->prio);
}

static inline struct pid *task_pid(struct task_struct *task)
{
	return task->pids[PIDTYPE_PID].pid;
}

static inline struct pid *task_tgid(struct task_struct *task)
{
	return task->group_leader->pids[PIDTYPE_PID].pid;
}

/*
 * Without tasklist or rcu lock it is not safe to dereference
 * the result of task_pgrp/task_session even if task == current,
 * we can race with another thread doing sys_setsid/sys_setpgid.
 */
static inline struct pid *task_pgrp(struct task_struct *task)
{
	return task->group_leader->pids[PIDTYPE_PGID].pid;
}

static inline struct pid *task_session(struct task_struct *task)
{
	return task->group_leader->pids[PIDTYPE_SID].pid;
}

struct pid_namespace;

/*
 * the helpers to get the task's different pids as they are seen
 * from various namespaces
 *
 * task_xid_nr()     : global id, i.e. the id seen from the init namespace;
 * task_xid_vnr()    : virtual id, i.e. the id seen from the pid namespace of
 *                     current.
 * task_xid_nr_ns()  : id seen from the ns specified;
 *
 * set_task_vxid()   : assigns a virtual id to a task;
 *
 * see also pid_nr() etc in include/linux/pid.h
 */
pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
			struct pid_namespace *ns);

static inline pid_t task_pid_nr(struct task_struct *tsk)
{
	return tsk->pid;
}

static inline pid_t task_pid_nr_ns(struct task_struct *tsk,
					struct pid_namespace *ns)
{
	return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
}

static inline pid_t task_pid_vnr(struct task_struct *tsk)
{
	return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
}


static inline pid_t task_tgid_nr(struct task_struct *tsk)
{
	return tsk->tgid;
}

pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);

static inline pid_t task_tgid_vnr(struct task_struct *tsk)
{
	return pid_vnr(task_tgid(tsk));
}


static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk,
					struct pid_namespace *ns)
{
	return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
}

static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
{
	return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
}


static inline pid_t task_session_nr_ns(struct task_struct *tsk,
					struct pid_namespace *ns)
{
	return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
}

static inline pid_t task_session_vnr(struct task_struct *tsk)
{
	return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
}

/* obsolete, do not use */
static inline pid_t task_pgrp_nr(struct task_struct *tsk)
{
	return task_pgrp_nr_ns(tsk, &init_pid_ns);
}

/**
 * pid_alive - check that a task structure is not stale
 * @p: Task structure to be checked.
 *
 * Test if a process is not yet dead (at most zombie state)
 * If pid_alive fails, then pointers within the task structure
 * can be stale and must not be dereferenced.
 */
static inline int pid_alive(struct task_struct *p)
{
	return p->pids[PIDTYPE_PID].pid != NULL;
}

/**
 * is_global_init - check if a task structure is init
 * @tsk: Task structure to be checked.
 *
 * Check if a task structure is the first user space task the kernel created.
 */
static inline int is_global_init(struct task_struct *tsk)
{
	return tsk->pid == 1;
}

/*
 * is_container_init:
 * check whether in the task is init in its own pid namespace.
 */
extern int is_container_init(struct task_struct *tsk);

extern struct pid *cad_pid;

extern void free_task(struct task_struct *tsk);
#define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)

extern void __put_task_struct(struct task_struct *t);

static inline void put_task_struct(struct task_struct *t)
{
	if (atomic_dec_and_test(&t->usage))
		__put_task_struct(t);
}

extern cputime_t task_utime(struct task_struct *p);
extern cputime_t task_stime(struct task_struct *p);
extern cputime_t task_gtime(struct task_struct *p);

/*
 * Per process flags
 */
#define PF_ALIGNWARN	0x00000001	/* Print alignment warning msgs */
					/* Not implemented yet, only for 486*/
#define PF_STARTING	0x00000002	/* being created */
#define PF_EXITING	0x00000004	/* getting shut down */
#define PF_EXITPIDONE	0x00000008	/* pi exit done on shut down */
#define PF_VCPU		0x00000010	/* I'm a virtual CPU */
#define PF_FORKNOEXEC	0x00000040	/* forked but didn't exec */
#define PF_MCE_PROCESS  0x00000080      /* process policy on mce errors */
#define PF_SUPERPRIV	0x00000100	/* used super-user privileges */
#define PF_DUMPCORE	0x00000200	/* dumped core */
#define PF_SIGNALED	0x00000400	/* killed by a signal */
#define PF_MEMALLOC	0x00000800	/* Allocating memory */
#define PF_FLUSHER	0x00001000	/* responsible for disk writeback */
#define PF_USED_MATH	0x00002000	/* if unset the fpu must be initialized before use */
#define PF_FREEZING	0x00004000	/* freeze in progress. do not account to load */
#define PF_NOFREEZE	0x00008000	/* this thread should not be frozen */
#define PF_FROZEN	0x00010000	/* frozen for system suspend */
#define PF_FSTRANS	0x00020000	/* inside a filesystem transaction */
#define PF_KSWAPD	0x00040000	/* I am kswapd */
#define PF_LESS_THROTTLE 0x00100000	/* Throttle me less: I clean memory */
#define PF_KTHREAD	0x00200000	/* I am a kernel thread */
#define PF_RANDOMIZE	0x00400000	/* randomize virtual address space */
#define PF_SWAPWRITE	0x00800000	/* Allowed to write to swap */
#define PF_SPREAD_PAGE	0x01000000	/* Spread page cache over cpuset */
#define PF_SPREAD_SLAB	0x02000000	/* Spread some slab caches over cpuset */
#define PF_THREAD_BOUND	0x04000000	/* Thread bound to specific cpu */
#define PF_MCE_EARLY    0x08000000      /* Early kill for mce process policy */
#define PF_MEMPOLICY	0x10000000	/* Non-default NUMA mempolicy */
#define PF_MUTEX_TESTER	0x20000000	/* Thread belongs to the rt mutex tester */
#define PF_FREEZER_SKIP	0x40000000	/* Freezer should not count it as freezeable */
#define PF_FREEZER_NOSIG 0x80000000	/* Freezer won't send signals to it */

/*
 * Only the _current_ task can read/write to tsk->flags, but other
 * tasks can access tsk->flags in readonly mode for example
 * with tsk_used_math (like during threaded core dumping).
 * There is however an exception to this rule during ptrace
 * or during fork: the ptracer task is allowed to write to the
 * child->flags of its traced child (same goes for fork, the parent
 * can write to the child->flags), because we're guaranteed the
 * child is not running and in turn not changing child->flags
 * at the same time the parent does it.
 */
#define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
#define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
#define clear_used_math() clear_stopped_child_used_math(current)
#define set_used_math() set_stopped_child_used_math(current)
#define conditional_stopped_child_used_math(condition, child) \
	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
#define conditional_used_math(condition) \
	conditional_stopped_child_used_math(condition, current)
#define copy_to_stopped_child_used_math(child) \
	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
/* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
#define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
#define used_math() tsk_used_math(current)

#ifdef CONFIG_TREE_PREEMPT_RCU

#define RCU_READ_UNLOCK_BLOCKED (1 << 0) /* blocked while in RCU read-side. */
#define RCU_READ_UNLOCK_NEED_QS (1 << 1) /* RCU core needs CPU response. */

static inline void rcu_copy_process(struct task_struct *p)
{
	p->rcu_read_lock_nesting = 0;
	p->rcu_read_unlock_special = 0;
	p->rcu_blocked_node = NULL;
	INIT_LIST_HEAD(&p->rcu_node_entry);
}

#else

static inline void rcu_copy_process(struct task_struct *p)
{
}

#endif

#ifdef CONFIG_SMP
extern int set_cpus_allowed_ptr(struct task_struct *p,
				const struct cpumask *new_mask);
#else
static inline int set_cpus_allowed_ptr(struct task_struct *p,
				       const struct cpumask *new_mask)
{
	if (!cpumask_test_cpu(0, new_mask))
		return -EINVAL;
	return 0;
}
#endif

#ifndef CONFIG_CPUMASK_OFFSTACK
static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
{
	return set_cpus_allowed_ptr(p, &new_mask);
}
#endif

extern unsigned long long sched_clock(void);
/*
 * See the comment in kernel/sched_clock.c
 */
extern u64 cpu_clock(int cpu);
extern u64 local_clock(void);
extern u64 sched_clock_cpu(int cpu);


extern void sched_clock_init(void);

#ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
static inline void sched_clock_tick(void)
{
}

static inline void sched_clock_idle_sleep_event(void)
{
}

static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
{
}
#else
/*
 * Architectures can set this to 1 if they have specified
 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig,
 * but then during bootup it turns out that sched_clock()
 * is reliable after all:
 */
extern int sched_clock_stable;

extern void sched_clock_tick(void);
extern void sched_clock_idle_sleep_event(void);
extern void sched_clock_idle_wakeup_event(u64 delta_ns);
#endif

extern unsigned long long
task_sched_runtime(struct task_struct *task);
extern unsigned long long thread_group_sched_runtime(struct task_struct *task);

/* sched_exec is called by processes performing an exec */
#ifdef CONFIG_SMP
extern void sched_exec(void);
#else
#define sched_exec()   {}
#endif

extern void sched_clock_idle_sleep_event(void);
extern void sched_clock_idle_wakeup_event(u64 delta_ns);

#ifdef CONFIG_HOTPLUG_CPU
extern void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p);
extern void idle_task_exit(void);
#else
static inline void idle_task_exit(void) {}
#endif

extern void sched_idle_next(void);

#if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP)
extern void wake_up_idle_cpu(int cpu);
#else
static inline void wake_up_idle_cpu(int cpu) { }
#endif

extern unsigned int sysctl_sched_latency;
extern unsigned int sysctl_sched_min_granularity;
extern unsigned int sysctl_sched_wakeup_granularity;
extern unsigned int sysctl_sched_child_runs_first;

enum sched_tunable_scaling {
	SCHED_TUNABLESCALING_NONE,
	SCHED_TUNABLESCALING_LOG,
	SCHED_TUNABLESCALING_LINEAR,
	SCHED_TUNABLESCALING_END,
};
extern enum sched_tunable_scaling sysctl_sched_tunable_scaling;

#ifdef CONFIG_SCHED_DEBUG
extern unsigned int sysctl_sched_features;
extern unsigned int sysctl_sched_migration_cost;
extern unsigned int sysctl_sched_nr_migrate;
extern unsigned int sysctl_sched_time_avg;
extern unsigned int sysctl_timer_migration;
extern unsigned int sysctl_sched_shares_window;

int sched_proc_update_handler(struct ctl_table *table, int write,
		void __user *buffer, size_t *length,
		loff_t *ppos);
#endif
#ifdef CONFIG_SCHED_DEBUG
static inline unsigned int get_sysctl_timer_migration(void)
{
	return sysctl_timer_migration;
}
#else
static inline unsigned int get_sysctl_timer_migration(void)
{
	return 1;
}
#endif
extern unsigned int sysctl_sched_rt_period;
extern int sysctl_sched_rt_runtime;

int sched_rt_handler(struct ctl_table *table, int write,
		void __user *buffer, size_t *lenp,
		loff_t *ppos);

extern unsigned int sysctl_sched_compat_yield;

#ifdef CONFIG_SCHED_AUTOGROUP
extern unsigned int sysctl_sched_autogroup_enabled;

extern void sched_autogroup_create_attach(struct task_struct *p);
extern void sched_autogroup_detach(struct task_struct *p);
extern void sched_autogroup_fork(struct signal_struct *sig);
extern void sched_autogroup_exit(struct signal_struct *sig);
#ifdef CONFIG_PROC_FS
extern void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m);
extern int proc_sched_autogroup_set_nice(struct task_struct *p, int *nice);
#endif
#else
static inline void sched_autogroup_create_attach(struct task_struct *p) { }
static inline void sched_autogroup_detach(struct task_struct *p) { }
static inline void sched_autogroup_fork(struct signal_struct *sig) { }
static inline void sched_autogroup_exit(struct signal_struct *sig) { }
#endif

#ifdef CONFIG_CFS_BANDWIDTH
extern unsigned int sysctl_sched_cfs_bandwidth_slice;
#endif

#ifdef CONFIG_RT_MUTEXES
extern int rt_mutex_getprio(struct task_struct *p);
extern void rt_mutex_setprio(struct task_struct *p, int prio);
extern void rt_mutex_adjust_pi(struct task_struct *p);
#else
static inline int rt_mutex_getprio(struct task_struct *p)
{
	return p->normal_prio;
}
# define rt_mutex_adjust_pi(p)		do { } while (0)
#endif

extern bool yield_to(struct task_struct *p, bool preempt);
extern void set_user_nice(struct task_struct *p, long nice);
extern int task_prio(const struct task_struct *p);
extern int task_nice(const struct task_struct *p);
extern int can_nice(const struct task_struct *p, const int nice);
extern int task_curr(const struct task_struct *p);
extern int idle_cpu(int cpu);
extern int sched_setscheduler(struct task_struct *, int, struct sched_param *);
extern int sched_setscheduler_nocheck(struct task_struct *, int,
				      struct sched_param *);
extern struct task_struct *idle_task(int cpu);
extern struct task_struct *curr_task(int cpu);
extern void set_curr_task(int cpu, struct task_struct *p);

void yield(void);

/*
 * The default (Linux) execution domain.
 */
extern struct exec_domain	default_exec_domain;

union thread_union {
	struct thread_info thread_info;
	unsigned long stack[THREAD_SIZE/sizeof(long)];
};

#ifndef __HAVE_ARCH_KSTACK_END
static inline int kstack_end(void *addr)
{
	/* Reliable end of stack detection:
	 * Some APM bios versions misalign the stack
	 */
	return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
}
#endif

extern union thread_union init_thread_union;
extern struct task_struct init_task;

extern struct   mm_struct init_mm;

extern struct pid_namespace init_pid_ns;

/*
 * find a task by one of its numerical ids
 *
 * find_task_by_pid_ns():
 *      finds a task by its pid in the specified namespace
 * find_task_by_vpid():
 *      finds a task by its virtual pid
 *
 * see also find_vpid() etc in include/linux/pid.h
 */

extern struct task_struct *find_task_by_vpid(pid_t nr);
extern struct task_struct *find_task_by_pid_ns(pid_t nr,
		struct pid_namespace *ns);

extern void __set_special_pids(struct pid *pid);

/* per-UID process charging. */
extern struct user_struct * alloc_uid(struct user_namespace *, uid_t);
static inline struct user_struct *get_uid(struct user_struct *u)
{
	atomic_inc(&u->__count);
	return u;
}
extern void free_uid(struct user_struct *);
extern void release_uids(struct user_namespace *ns);

#include 

extern void do_timer(unsigned long ticks);

extern int wake_up_state(struct task_struct *tsk, unsigned int state);
extern int wake_up_process(struct task_struct *tsk);
extern void wake_up_new_task(struct task_struct *tsk,
				unsigned long clone_flags);
#ifdef CONFIG_SMP
 extern void kick_process(struct task_struct *tsk);
#else
 static inline void kick_process(struct task_struct *tsk) { }
#endif
extern void sched_fork(struct task_struct *p, int clone_flags);
extern void sched_dead(struct task_struct *p);

extern void proc_caches_init(void);
extern void flush_signals(struct task_struct *);
extern void __flush_signals(struct task_struct *);
extern void ignore_signals(struct task_struct *);
extern void flush_signal_handlers(struct task_struct *, int force_default);
extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);

static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
{
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&tsk->sighand->siglock, flags);
	ret = dequeue_signal(tsk, mask, info);
	spin_unlock_irqrestore(&tsk->sighand->siglock, flags);

	return ret;
}

extern void block_all_signals(int (*notifier)(void *priv), void *priv,
			      sigset_t *mask);
extern void unblock_all_signals(void);
extern void release_task(struct task_struct * p);
extern int send_sig_info(int, struct siginfo *, struct task_struct *);
extern int force_sigsegv(int, struct task_struct *);
extern int force_sig_info(int, struct siginfo *, struct task_struct *);
extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
extern int kill_pid_info_as_uid(int, struct siginfo *, struct pid *, uid_t, uid_t, u32);
extern int kill_pgrp(struct pid *pid, int sig, int priv);
extern int kill_pid(struct pid *pid, int sig, int priv);
extern int kill_proc_info(int, struct siginfo *, pid_t);
extern int do_notify_parent(struct task_struct *, int);
extern void do_notify_parent_cldstop(struct task_struct *, int);
extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
extern void force_sig(int, struct task_struct *);
extern void force_sig_specific(int, struct task_struct *);
extern int send_sig(int, struct task_struct *, int);
extern void zap_other_threads(struct task_struct *p);
extern struct sigqueue *sigqueue_alloc(void);
extern void sigqueue_free(struct sigqueue *);
extern int send_sigqueue(struct sigqueue *,  struct task_struct *, int group);
extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
extern int do_sigaltstack(const stack_t __user *, stack_t __user *, unsigned long);

static inline int kill_cad_pid(int sig, int priv)
{
	return kill_pid(cad_pid, sig, priv);
}

/* These can be the second arg to send_sig_info/send_group_sig_info.  */
#define SEND_SIG_NOINFO ((struct siginfo *) 0)
#define SEND_SIG_PRIV	((struct siginfo *) 1)
#define SEND_SIG_FORCED	((struct siginfo *) 2)

static inline int is_si_special(const struct siginfo *info)
{
	return info <= SEND_SIG_FORCED;
}

/*
 * True if we are on the alternate signal stack.
 */
static inline int on_sig_stack(unsigned long sp)
{
#ifdef CONFIG_STACK_GROWSUP
	return sp >= current->sas_ss_sp &&
		sp - current->sas_ss_sp < current->sas_ss_size;
#else
	return sp > current->sas_ss_sp &&
		sp - current->sas_ss_sp <= current->sas_ss_size;
#endif
}

static inline int sas_ss_flags(unsigned long sp)
{
	return (current->sas_ss_size == 0 ? SS_DISABLE
		: on_sig_stack(sp) ? SS_ONSTACK : 0);
}

/*
 * Routines for handling mm_structs
 */
extern struct mm_struct * mm_alloc(void);

/* mmdrop drops the mm and the page tables */
extern void __mmdrop(struct mm_struct *);
static inline void mmdrop(struct mm_struct * mm)
{
	if (unlikely(atomic_dec_and_test(&mm->mm_count)))
		__mmdrop(mm);
}

/* mmput gets rid of the mappings and all user-space */
extern void mmput(struct mm_struct *);
/* Grab a reference to a task's mm, if it is not already going away */
extern struct mm_struct *get_task_mm(struct task_struct *task);
/* Remove the current tasks stale references to the old mm_struct */
extern void mm_release(struct task_struct *, struct mm_struct *);
/* Allocate a new mm structure and copy contents from tsk->mm */
extern struct mm_struct *dup_mm(struct task_struct *tsk);

extern int copy_thread(unsigned long, unsigned long, unsigned long,
			struct task_struct *, struct pt_regs *);
extern void flush_thread(void);
extern void exit_thread(void);

extern void exit_files(struct task_struct *);
extern void __cleanup_signal(struct signal_struct *);
extern void __cleanup_sighand(struct sighand_struct *);

extern void exit_itimers(struct signal_struct *);
extern void flush_itimer_signals(void);

extern NORET_TYPE void do_group_exit(int);

extern void daemonize(const char *, ...);
extern int allow_signal(int);
extern int disallow_signal(int);

extern int do_execve(char *, char __user * __user *, char __user * __user *, struct pt_regs *);
extern long do_fork(unsigned long, unsigned long, struct pt_regs *, unsigned long, int __user *, int __user *);
struct task_struct *fork_idle(int);

extern void set_task_comm(struct task_struct *tsk, char *from);
extern char *get_task_comm(char *to, struct task_struct *tsk);

#ifdef CONFIG_SMP
extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
#else
static inline unsigned long wait_task_inactive(struct task_struct *p,
					       long match_state)
{
	return 1;
}
#endif

#define next_task(p) \
	list_entry_rcu((p)->tasks.next, struct task_struct, tasks)

#define for_each_process(p) \
	for (p = &init_task ; (p = next_task(p)) != &init_task ; )

extern bool current_is_single_threaded(void);

/*
 * Careful: do_each_thread/while_each_thread is a double loop so
 *          'break' will not work as expected - use goto instead.
 */
#define do_each_thread(g, t) \
	for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do

#define while_each_thread(g, t) \
	while ((t = next_thread(t)) != g)

/* de_thread depends on thread_group_leader not being a pid based check */
#define thread_group_leader(p)	(p == p->group_leader)

/* Do to the insanities of de_thread it is possible for a process
 * to have the pid of the thread group leader without actually being
 * the thread group leader.  For iteration through the pids in proc
 * all we care about is that we have a task with the appropriate
 * pid, we don't actually care if we have the right task.
 */
static inline int has_group_leader_pid(struct task_struct *p)
{
	return p->pid == p->tgid;
}

static inline
int same_thread_group(struct task_struct *p1, struct task_struct *p2)
{
	return p1->tgid == p2->tgid;
}

static inline struct task_struct *next_thread(const struct task_struct *p)
{
	return list_entry_rcu(p->thread_group.next,
			      struct task_struct, thread_group);
}

static inline int thread_group_empty(struct task_struct *p)
{
	return list_empty(&p->thread_group);
}

#define delay_group_leader(p) \
		(thread_group_leader(p) && !thread_group_empty(p))

static inline int task_detached(struct task_struct *p)
{
	return p->exit_signal == -1;
}

/*
 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
 * subscriptions and synchronises with wait4().  Also used in procfs.  Also
 * pins the final release of task.io_context.  Also protects ->cpuset and
 * ->cgroup.subsys[].
 *
 * Nests both inside and outside of read_lock(&tasklist_lock).
 * It must not be nested with write_lock_irq(&tasklist_lock),
 * neither inside nor outside.
 */
static inline void task_lock(struct task_struct *p)
{
	spin_lock(&p->alloc_lock);
}

static inline void task_unlock(struct task_struct *p)
{
	spin_unlock(&p->alloc_lock);
}

extern struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
							unsigned long *flags);

static inline void unlock_task_sighand(struct task_struct *tsk,
						unsigned long *flags)
{
	spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
}

#ifndef __HAVE_THREAD_FUNCTIONS

#define task_thread_info(task)	((struct thread_info *)(task)->stack)
#define task_stack_page(task)	((task)->stack)

static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
{
	*task_thread_info(p) = *task_thread_info(org);
	task_thread_info(p)->task = p;
}

static inline unsigned long *end_of_stack(struct task_struct *p)
{
	return (unsigned long *)(task_thread_info(p) + 1);
}

#endif

static inline int object_is_on_stack(void *obj)
{
	void *stack = task_stack_page(current);

	return (obj >= stack) && (obj < (stack + THREAD_SIZE));
}

extern void thread_info_cache_init(void);

#ifdef CONFIG_DEBUG_STACK_USAGE
static inline unsigned long stack_not_used(struct task_struct *p)
{
	unsigned long *n = end_of_stack(p);

	do { 	/* Skip over canary */
		n++;
	} while (!*n);

	return (unsigned long)n - (unsigned long)end_of_stack(p);
}
#endif

/* set thread flags in other task's structures
 * - see asm/thread_info.h for TIF_xxxx flags available
 */
static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
{
	set_ti_thread_flag(task_thread_info(tsk), flag);
}

static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
{
	clear_ti_thread_flag(task_thread_info(tsk), flag);
}

static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
{
	return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
}

static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
{
	return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
}

static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
{
	return test_ti_thread_flag(task_thread_info(tsk), flag);
}

static inline void set_tsk_need_resched(struct task_struct *tsk)
{
	set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
}

static inline void clear_tsk_need_resched(struct task_struct *tsk)
{
	clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
}

static inline int test_tsk_need_resched(struct task_struct *tsk)
{
	return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
}

static inline int restart_syscall(void)
{
	set_tsk_thread_flag(current, TIF_SIGPENDING);
	return -ERESTARTNOINTR;
}

static inline int signal_pending(struct task_struct *p)
{
	return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
}

static inline int __fatal_signal_pending(struct task_struct *p)
{
	return unlikely(sigismember(&p->pending.signal, SIGKILL));
}

static inline int fatal_signal_pending(struct task_struct *p)
{
	return signal_pending(p) && __fatal_signal_pending(p);
}

static inline int signal_pending_state(long state, struct task_struct *p)
{
	if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
		return 0;
	if (!signal_pending(p))
		return 0;

	return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
}

static inline int need_resched(void)
{
	return unlikely(test_thread_flag(TIF_NEED_RESCHED));
}

/*
 * cond_resched() and cond_resched_lock(): latency reduction via
 * explicit rescheduling in places that are safe. The return
 * value indicates whether a reschedule was done in fact.
 * cond_resched_lock() will drop the spinlock before scheduling,
 * cond_resched_softirq() will enable bhs before scheduling.
 */
extern int _cond_resched(void);

#define cond_resched() ({			\
	__might_sleep(__FILE__, __LINE__, 0);	\
	_cond_resched();			\
})

extern int __cond_resched_lock(spinlock_t *lock);

#ifdef CONFIG_PREEMPT
#define PREEMPT_LOCK_OFFSET	PREEMPT_OFFSET
#else
#define PREEMPT_LOCK_OFFSET	0
#endif

#define cond_resched_lock(lock) ({				\
	__might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);	\
	__cond_resched_lock(lock);				\
})

extern int __cond_resched_softirq(void);

#define cond_resched_softirq() ({				\
	__might_sleep(__FILE__, __LINE__, SOFTIRQ_OFFSET);	\
	__cond_resched_softirq();				\
})

/*
 * Does a critical section need to be broken due to another
 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
 * but a general need for low latency)
 */
static inline int spin_needbreak(spinlock_t *lock)
{
#ifdef CONFIG_PREEMPT
	return spin_is_contended(lock);
#else
	return 0;
#endif
}

/*
 * Thread group CPU time accounting.
 */
void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times);
void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times);

static inline void thread_group_cputime_init(struct signal_struct *sig)
{
	sig->cputimer.cputime = INIT_CPUTIME;
	spin_lock_init(&sig->cputimer.lock);
	sig->cputimer.running = 0;
}

static inline void thread_group_cputime_free(struct signal_struct *sig)
{
}

/*
 * Reevaluate whether the task has signals pending delivery.
 * Wake the task if so.
 * This is required every time the blocked sigset_t changes.
 * callers must hold sighand->siglock.
 */
extern void recalc_sigpending_and_wake(struct task_struct *t);
extern void recalc_sigpending(void);

extern void signal_wake_up(struct task_struct *t, int resume_stopped);

/*
 * Wrappers for p->thread_info->cpu access. No-op on UP.
 */
#ifdef CONFIG_SMP

static inline unsigned int task_cpu(const struct task_struct *p)
{
	return task_thread_info(p)->cpu;
}

extern void set_task_cpu(struct task_struct *p, unsigned int cpu);

#else

static inline unsigned int task_cpu(const struct task_struct *p)
{
	return 0;
}

static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
{
}

#endif /* CONFIG_SMP */

extern void arch_pick_mmap_layout(struct mm_struct *mm);

#ifdef CONFIG_TRACING
extern void
__trace_special(void *__tr, void *__data,
		unsigned long arg1, unsigned long arg2, unsigned long arg3);
#else
static inline void
__trace_special(void *__tr, void *__data,
		unsigned long arg1, unsigned long arg2, unsigned long arg3)
{
}
#endif

extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
extern long sched_getaffinity(pid_t pid, struct cpumask *mask);

extern void normalize_rt_tasks(void);

#ifdef CONFIG_GROUP_SCHED

extern struct task_group init_task_group;
#ifdef CONFIG_USER_SCHED
extern struct task_group root_task_group;
extern void set_tg_uid(struct user_struct *user);
#endif

extern struct task_group *sched_create_group(struct task_group *parent);
extern void sched_destroy_group(struct task_group *tg);
extern void sched_move_task(struct task_struct *tsk);
extern void __sched_move_task(struct task_struct *tsk);
#ifdef CONFIG_FAIR_GROUP_SCHED
extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
extern unsigned long sched_group_shares(struct task_group *tg);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
extern int sched_group_set_rt_runtime(struct task_group *tg,
				      long rt_runtime_us);
extern long sched_group_rt_runtime(struct task_group *tg);
extern int sched_group_set_rt_period(struct task_group *tg,
				      long rt_period_us);
extern long sched_group_rt_period(struct task_group *tg);
extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);
#endif
#endif

extern int task_can_switch_user(struct user_struct *up,
					struct task_struct *tsk);

#ifdef CONFIG_TASK_XACCT
static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
{
	tsk->ioac.rchar += amt;
}

static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
{
	tsk->ioac.wchar += amt;
}

static inline void inc_syscr(struct task_struct *tsk)
{
	tsk->ioac.syscr++;
}

static inline void inc_syscw(struct task_struct *tsk)
{
	tsk->ioac.syscw++;
}
#else
static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
{
}

static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
{
}

static inline void inc_syscr(struct task_struct *tsk)
{
}

static inline void inc_syscw(struct task_struct *tsk)
{
}
#endif

#ifndef TASK_SIZE_OF
#define TASK_SIZE_OF(tsk)	TASK_SIZE
#endif

/*
 * Call the function if the target task is executing on a CPU right now:
 */
extern void task_oncpu_function_call(struct task_struct *p,
				     void (*func) (void *info), void *info);


#ifdef CONFIG_MM_OWNER
extern void mm_update_next_owner(struct mm_struct *mm);
extern void mm_init_owner(struct mm_struct *mm, struct task_struct *p);
#else
static inline void mm_update_next_owner(struct mm_struct *mm)
{
}

static inline void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
{
}
#endif /* CONFIG_MM_OWNER */

#define TASK_STATE_TO_CHAR_STR "RSDTtZX"

static inline unsigned long task_rlimit(const struct task_struct *tsk,
		unsigned int limit)
{
	return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_cur);
}

static inline unsigned long task_rlimit_max(const struct task_struct *tsk,
		unsigned int limit)
{
	return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_max);
}

static inline unsigned long rlimit(unsigned int limit)
{
	return task_rlimit(current, limit);
}

static inline unsigned long rlimit_max(unsigned int limit)
{
	return task_rlimit_max(current, limit);
}

#endif /* __KERNEL__ */

#endif

Makefile

# Comment/uncomment the following line to disable/enable debugging
DEBUG = y


# Add your debugging flag (or not) to EXTRA_CFLAGS
ifeq ($(DEBUG),y)
	DEBFLAGS = -O -g -DSCULL_DEBUG 
else
	DEBFLAGS = -O2
endif

EXTRA_CFLAGS += $(DEBFLAGS)
EXTRA_CFLAGS += -I$(LDDINC)

# call from kernel build system
ifneq ($(KERNELRELEASE),)

scull-objs := main.o pipe.o access.o

obj-m := scull.o

else

KERNELDIR ?= /lib/modules/$(shell uname -r)/build
PWD		  := $(shell pwd)

modules:
	$(MAKE) -C $(KERNELDIR) M=$(PWD) LDDINC=$(PWD)/../include modules

endif

clean:
	rm -rf *.o *~ core .depend .*.cmd *.ko *.mod.c .tmp_versions *.order *.symvers *.unsigned
	
depend .depend dep:
	$(CC) $(EXTRA_CFLAGS) -M *.c > .depend
	
ifeq (.depend, $(wildcard .depend))
include .depend
endif
字符设备驱动_第1张图片

你可能感兴趣的:(驱动开发)