算法 (五) : 归并排序

 

归并排序(MERGE-SORT)是建立在归并操作上的一种有效的排序算法,该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。将已有序的子序列合并,得到完全有序的序列;即先使每个子序列有序,再使子序列段间有序。若将两个有序表合并成一个有序表,称为二路归并。

归并过程为:比较a[i]和b[j]的大小,若a[i]≤b[j],则将第一个有序表中的元素a[i]复制到r[k]中,并令i和k分别加上1;否则将第二个有序表中的元素b[j]复制到r[k]中,并令j和k分别加上1,如此循环下去,直到其中一个有序表取完,然后再将另一个有序表中剩余的元素复制到r中从下标k到下标t的单元。归并排序的算法我们通常用递归实现,先把待排序区间[s,t]以中点二分,接着把左边子区间排序,再把右边子区间排序,最后把左区间和右区间用一次归并操作合并成有序的区间[s,t]。

 

要点

归并排序是建立在归并操作上的一种有效的排序算法,该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。

将已有序的子序列合并,得到完全有序的序列;即先使每个子序列有序,再使子序列段间有序。若将两个有序表合并成一个有序表,称为二路归并。

 

归并排序的基本思想

将待排序序列R[0...n-1]看成是n个长度为1的有序序列,将相邻的有序表成对归并,得到n/2个长度为2的有序表;将这些有序序列再次归并,得到n/4个长度为4的有序序列;如此反复进行下去,最后得到一个长度为n的有序序列。

综上可知:

归并排序其实要做两件事:

(1)“分解”——将序列每次折半划分。

(2)“合并”——将划分后的序列段两两合并后排序。

 

我们先来考虑第二步,如何合并?

在每次合并过程中,都是对两个有序的序列段进行合并,然后排序。

这两个有序序列段分别为 R[low, mid] 和 R[mid+1, high]。

先将他们合并到一个局部的暂存数组R2中,带合并完成后再将R2复制回R中。

为了方便描述,我们称 R[low, mid] 第一段,R[mid+1, high] 为第二段。

每次从两个段中取出一个记录进行关键字的比较,将较小者放入R2中。最后将各段中余下的部分直接复制到R2中。

经过这样的过程,R2已经是一个有序的序列,再将其复制回R中,一次合并排序就完成了。

核心代码

public void Merge(int[] array, int low, int mid, int high) {

    int i = low; // i是第一段序列的下标

    int j = mid + 1; // j是第二段序列的下标

    int k = 0; // k是临时存放合并序列的下标

    int[] array2 = new int[high - low + 1]; // array2是临时合并序列

    // 扫描第一段和第二段序列,直到有一个扫描结束

    while (i <= mid && j <= high) {

        // 判断第一段和第二段取出的数哪个更小,将其存入合并序列,并继续向下扫描

        if (array[i] <= array[j]) {

            array2[k] = array[i];

            i++;

            k++;

        } else {

            array2[k] = array[j];

            j++;

            k++;

        }

    }

    // 若第一段序列还没扫描完,将其全部复制到合并序列

    while (i <= mid) {

        array2[k] = array[i];

        i++;

        k++;

    }

    // 若第二段序列还没扫描完,将其全部复制到合并序列

    while (j <= high) {

        array2[k] = array[j];

        j++;

        k++;

    }

    // 将合并序列复制到原始序列中

    for (k = 0, i = low; i <= high; i++, k++) {

        array[i] = array2[k];

    }

}

 

掌握了合并的方法,接下来,让我们来了解  如何分解。

算法 (五) : 归并排序_第1张图片在某趟归并中,设各子表的长度为gap,则归并前R[0...n-1]中共有n/gap个有序的子表:R[0...gap-1], R[gap...2*gap-1], ... , R[(n/gap)*gap ... n-1]。

调用Merge将相邻的子表归并时,必须对表的特殊情况进行特殊处理。

若子表个数为奇数,则最后一个子表无须和其他子表归并(即本趟处理轮空):若子表个数为偶数,则要注意到最后一对子表中后一个子表区间的上限为n-1。 

核心代码

public void MergePass(int[] array, int gap, int length) {

    int i = 0;

    // 归并gap长度的两个相邻子表

    for (i = 0; i + 2 * gap - 1 < length; i = i + 2 * gap) {

        Merge(array, i, i + gap - 1, i + 2 * gap - 1);

    }

    // 余下两个子表,后者长度小于gap

    if (i + gap - 1 < length) {

        Merge(array, i, i + gap - 1, length - 1);

    }

}

public int[] sort(int[] list) {

    for (int gap = 1; gap < list.length; gap = 2 * gap) {

        MergePass(list, gap, list.length);

        System.out.print("gap = " + gap + ":\t");

        this.printAll(list);

    }

    return list;

}

算法分析

归并排序算法的性能

排序类别

排序方法

时间复杂度

空间复杂度

稳定性

复杂性

平均情况

最坏情况

最好情况

归并排序

归并排序

O(nlog2n)

O(nlog2n)

O(nlog2n)

O(n)

稳定

较复杂

 

时间复杂度

归并排序的形式就是一棵二叉树,它需要遍历的次数就是二叉树的深度,而根据完全二叉树的可以得出它的时间复杂度是O(n*log2n)。

 

空间复杂度

由前面的算法说明可知,算法处理过程中,需要一个大小为n的临时存储空间用以保存合并序列。

 

算法稳定性

在归并排序中,相等的元素的顺序不会改变,所以它是稳定的算法。

 

归并排序和堆排序、快速排序的比较

若从空间复杂度来考虑:首选堆排序,其次是快速排序,最后是归并排序。

若从稳定性来考虑,应选取归并排序,因为堆排序和快速排序都是不稳定的。

若从平均情况下的排序速度考虑,应该选择快速排序。 

 

你可能感兴趣的:(算法)