首先再来回顾一下梯度下降法的基础
现在写一个sklearn中的正规方程的线性回归模型 没有实现fit方法
import numpy as np
from .metrics import r2_score
class LinearRegression:
def __init__(self):
"""初始化Linear Regression模型"""
self.coef_ = None
self.intercept_ = None
self._theta = None
def predict(self, X_predict):
"""给定待预测数据集X_predict,返回表示X_predict的结果向量"""
assert self.intercept_ is not None and self.coef_ is not None, \
"must fit before predict!"
assert X_predict.shape[1] == len(self.coef_), \
"the feature number of X_predict must be equal to X_train"
X_b = np.hstack([np.ones((len(X_predict), 1)), X_predict])
return X_b.dot(self._theta)
def score(self, X_test, y_test):
"""根据测试数据集 X_test 和 y_test 确定当前模型的准确度"""
y_predict = self.predict(X_test)
return r2_score(y_test, y_predict)
def __repr__(self):
return "LinearRegression()"
因为这里是用线性回归做测试, 线性回归的正规方程解如下
此公式网上搜的, 推导过程可以看下这位老兄的博客 https://blog.csdn.net/chenlin41204050/article/details/78220280 (未经允许直接引用了哈)
实现正规方程解的fit如下:
def fit_normal(self, X_train, y_train):
"""根据训练数据集X_train, y_train训练Linear Regression模型"""
assert X_train.shape[0] == y_train.shape[0], \
"the size of X_train must be equal to the size of y_train"
X_b = np.hstack([np.ones((len(X_train), 1)), X_train])
self._theta = np.linalg.inv(X_b.T.dot(X_b)).dot(X_b.T).dot(y_train)
self.intercept_ = self._theta[0]
self.coef_ = self._theta[1:]
return self
要用梯度下降法, 就得找到损失函数, 然后计算梯度
下面是多元线性回归的瞬时函数
线性回归的lose
接着实现上图面试的梯度下降法的fit_gd如下
def fit_gd(self, X_train, y_train, eta=0.01, n_iters=1e4):
"""根据训练数据集X_train, y_train, 使用梯度下降法训练Linear Regression模型"""
assert X_train.shape[0] == y_train.shape[0], \
"the size of X_train must be equal to the size of y_train"
def J(theta, X_b, y):
try:
return np.sum((y - X_b.dot(theta)) ** 2) / len(y)
except:
return float('inf')
def dJ(theta, X_b, y):
return X_b.T.dot(X_b.dot(theta) - y) * 2. / len(y)
def gradient_descent(X_b, y, initial_theta, eta, n_iters=1e4, epsilon=1e-8):
theta = initial_theta
cur_iter = 0
while cur_iter < n_iters:
gradient = dJ(theta, X_b, y)
last_theta = theta
theta = theta - eta * gradient
if (abs(J(theta, X_b, y) - J(last_theta, X_b, y)) < epsilon):
break
cur_iter += 1
return theta
X_b = np.hstack([np.ones((len(X_train), 1)), X_train])
initial_theta = np.zeros(X_b.shape[1])
self._theta = gradient_descent(X_b, y_train, initial_theta, eta, n_iters)
self.intercept_ = self._theta[0]
self.coef_ = self._theta[1:]
return self
上面的方法都封装在一个LinearRegression.py中
现在开始测试
准备一些随机数据, 维度为5000, 样本数量1000
m = 1000
n = 5000
big_X = np.random.normal(size=(m,n))
true_theta = np.random.uniform(0.0, 100.0, size=n+1)
big_y = big_X.dot(true_theta[1:]) + true_theta[0] + np.random.normal(0, 10.0, size=m)
print(big_X.shape, big_y.shape)
%run LinearRegression.py
输出:
(1000, 5000) (1000,)
使用正规方程解训练线性回归
big_reg1 = LinearRegression()
%time big_reg1.fit_normal(X_train, y_train)
big_reg1.score(X_test, y_test)
输出:
CPU times: user 26.8 s, sys: 921 ms, total: 27.7 s
Wall time: 11.1 s
LinearRegression()
使用梯度下降法训练
big_reg2 = LinearRegression()
%time big_reg2.fit_gd(big_X, big_y)
输出:
CPU times: user 7.44 s, sys: 97.2 ms, total: 7.54 s
Wall time: 4.15 s
LinearRegression()