seq2seq模型实现

致谢

找了很久才找到的一个非常不错的seq2seq实现的教程
源代码基于tensorflow 1.6
原文链接

正文

本文是基于TensorFlow 1.6版本的Seq2Seq模型实现了一个机器翻译(Machine Translation)模型的baseline。

本篇代码与去年我在知乎专栏上发表的从Encoder到Decoder实现Seq2Seq模型大同小异,更新的原因有以下几个方面:

  • 去年文章接口实现采用TensorFlow 1.1实现,有些接口已经发生变化,导致代码下载以后部分片段无法正常运行;
  • 文章部分写作内容描述不够清晰,本篇文章对一些表达不当的地方进行重构;
  • 之前的Seq2Seq模型是对单词的字母进行排序,数据处理部分相对较为简单。而此次将采用英法平行语料来构建翻译模型,增加一些数据处理操作;
  • 专栏下一篇文章准备写关于改进版本的Machine Translation模型,包括使用BiRNN和Attention机制的模型(将采用Keras实现),此篇文章可以来做些许铺垫。

1 - Import packages

import warnings
warnings.filterwarnings("ignore")
import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt
import tqdm

2 - Data Process

数据处理包括以下部分:

  • 加载数据。本篇文章使用的数据是English-French平行语料(parallel corpus)。
    • small_vocab_en文件包含了英文原始语料,其中每一行代表一个完整的句子
    • small_vocab_fr文件包含了法语原始语料,其中每一行代表一个完整的句子
  • 数据探索。即对语料文本的统计性描述
  • 数据预处理。
    • 构造英文词典(vocabulary),对单词进行编码
    • 构造法语词典(vocabulary),对单词进行编码
  • 语料转换。
    • 将原始英文文本转换为机器可识别的编码
    • 将原始法语文本转换为机器可识别的编码

2.1 - 加载原始数据与目标数据

# English source data
with open("data/small_vocab_en", "r", encoding="utf-8") as f:
    source_text = f.read()

# French target data
with open("data/small_vocab_fr", "r", encoding="utf-8") as f:
    target_text = f.read()

2.2 - 统计性描述

对我们的英语-法语平行语料数据进行统计:

  • 英文语料包含的句子数,平均句子长度以及最大句子长度
  • 法语语料包含的句子数,平均句子长度以及最大句子长度
  • 英文语料的前10句话
  • 法语语料的前10句话
view_sentence_range = (0, 10)

# 下面这是对原始文本按照空格分开,这样就可以查看原始文本中到底包含了多少个单词
print('Dataset Stats')
print('Roughly the number of unique words: {}'.format(len({word: None for word in source_text.split()})))

# 按照换行符将原始文本分割成句子
print("-"*5 + "English Text" + "-"*5)
sentences = source_text.split('\n')
word_counts = [len(sentence.split()) for sentence in sentences]
print('Number of sentences: {}'.format(len(sentences)))
print('Average number of words in a sentence: {}'.format(np.average(word_counts)))
print('Max number of words in a sentence: {}'.format(np.max(word_counts)))

print()
print("-"*5 + "French Text" + "-"*5)
sentences = target_text.split('\n')
word_counts = [len(sentence.split()) for sentence in sentences]
print('Number of sentences: {}'.format(len(sentences)))
print('Average number of words in a sentence: {}'.format(np.average(word_counts)))
print('Max number of words in a sentence: {}'.format(np.max(word_counts)))

print()
print('English sentences {} to {}:'.format(*view_sentence_range))
print('\n'.join(source_text.split('\n')[view_sentence_range[0]:view_sentence_range[1]]))
print()
print('French sentences {} to {}:'.format(*view_sentence_range))
print('\n'.join(target_text.split('\n')[view_sentence_range[0]:view_sentence_range[1]]))

Dataset Stats
Roughly the number of unique words: 227
—–English Text—–
Number of sentences: 137861
Average number of words in a sentence: 13.225277634719028
Max number of words in a sentence: 17
—–French Text—–
Number of sentences: 137861
Average number of words in a sentence: 14.226612312401622
Max number of words in a sentence: 23
English sentences 0 to 10:
new jersey is sometimes quiet during autumn , and it is snowy in april .
the united states is usually chilly during july , and it is usually freezing in november .
california is usually quiet during march , and it is usually hot in june .
the united states is sometimes mild during june , and it is cold in september .
your least liked fruit is the grape , but my least liked is the apple .
his favorite fruit is the orange , but my favorite is the grape .
paris is relaxing during december , but it is usually chilly in july .
new jersey is busy during spring , and it is never hot in march .
our least liked fruit is the lemon , but my least liked is the grape .
the united states is sometimes busy during january , and it is sometimes warm in november .
French sentences 0 to 10:
new jersey est parfois calme pendant l’ automne , et il est neigeux en avril .
les états-unis est généralement froid en juillet , et il gèle habituellement en novembre .
california est généralement calme en mars , et il est généralement chaud en juin .
les états-unis est parfois légère en juin , et il fait froid en septembre .
votre moins aimé fruit est le raisin , mais mon moins aimé est la pomme .
son fruit préféré est l’orange , mais mon préféré est le raisin .
paris est relaxant en décembre , mais il est généralement froid en juillet .
new jersey est occupé au printemps , et il est jamais chaude en mars .
notre fruit est moins aimé le citron , mais mon moins aimé est le raisin .
les états-unis est parfois occupé en janvier , et il est parfois chaud en novembre .

2.3 - 数据预处理

机器翻译模型的基本架构是Seq2Seq模型,在构造模型之前,我们需要先对语料进行处理。即将文本语料转化为机器所能识别的数字。例如,对英文句子:I love machine learning and deep learning.编码为数字[28, 29, 274, 873, 12, 983, 873]。因此本部分主要完成以下几个任务:

  • 根据语料构造英文与法语的字典(vocabulary)
  • 构造英语与法语的映射,即将单词转换为数字的字典
  • 构造英语与法语的反向映射,即从数字转换为单词的字典
# 构造英文词典
source_vocab = list(set(source_text.lower().split()))
# 构造法文词典
target_vocab = list(set(target_text.lower().split()))
print("The size of English vocab is : {}".format(len(source_vocab)))
print("The size of French vocab is : {}".format(len(target_vocab)))

The size of English vocab is : 227
The size of French vocab is : 354

# 特殊字符
SOURCE_CODES = ['', '']
TARGET_CODES = ['', '', '', '']  # 在target中,需要增加特殊字符
# 构造英文映射字典
source_vocab_to_int = {word: idx for idx, word in enumerate(SOURCE_CODES + source_vocab)}
source_int_to_vocab = {idx: word for idx, word in enumerate(SOURCE_CODES + source_vocab)}

# 构造法语映射词典
target_vocab_to_int = {word: idx for idx, word in enumerate(TARGET_CODES + target_vocab)}
target_int_to_vocab = {idx: word for idx, word in enumerate(TARGET_CODES + target_vocab)}
print("The size of English Map is : {}".format(len(source_vocab_to_int)))
print("The size of French Map is : {}".format(len(target_vocab_to_int)))

The size of English Map is : 229
The size of French Map is : 358

2.4 - 语料转换

有了以上的词典与映射关系,我们就可以基于这些数据对文本进行转换,即将文本转换为数字。在转换过程中,由于我们LSTM只能处理定长的数据,因此我们需要保证输入语料的长度Tx与输出语料的长度Ty保持固定。假设Tx=20,则对于不足20个单词的句子进行PAD,对超过20个单词的句子进行截断。

例如,对于句子”I love machine learning and deep learning”,编码后为[28, 29, 274, 873, 12, 983, 873, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]。

def text_to_int(sentence, map_dict, max_length=20, is_target=False):
    """
    对文本句子进行数字编码

    @param sentence: 一个完整的句子,str类型
    @param map_dict: 单词到数字的映射,dict
    @param max_length: 句子的最大长度
    @param is_target: 是否为目标语句。在这里要区分目标句子与源句子,因为对于目标句子(即翻译后的句子)我们需要在句子最后增加
    """

    # 用填充整个序列
    text_to_idx = []
    # unk index
    unk_idx = map_dict.get("")
    pad_idx = map_dict.get("")
    eos_idx = map_dict.get("")

    # 如果是输入源文本
    if not is_target:
        for word in sentence.lower().split():
            text_to_idx.append(map_dict.get(word, unk_idx))

    # 否则,对于输出目标文本需要做的填充最后
    else:
        for word in sentence.lower().split():
            text_to_idx.append(map_dict.get(word, unk_idx))
        text_to_idx.append(eos_idx)

    # 如果超长需要截断
    if len(text_to_idx) > max_length:
        return text_to_idx[:max_length]
    # 如果不够则增加
    else:
        text_to_idx = text_to_idx + [pad_idx] * (max_length - len(text_to_idx))
        return text_to_idx
# 对源句子进行转换 Tx = 20
source_text_to_int = []

for sentence in tqdm.tqdm(source_text.split("\n")):
    source_text_to_int.append(text_to_int(sentence, source_vocab_to_int, 20, 
                                          is_target=False))
# 对目标句子进行转换  Ty = 25
target_text_to_int = []

for sentence in tqdm.tqdm(target_text.split("\n")):
    target_text_to_int.append(text_to_int(sentence, target_vocab_to_int, 25, 
                                          is_target=True))
random_index = 77

print("-"*5 + "English example" + "-"*5)
print(source_text.split("\n")[random_index])
print(source_text_to_int[random_index])

print()
print("-"*5 + "French example" + "-"*5)
print(target_text.split("\n")[random_index])
print(target_text_to_int[random_index])

—–English example—–
the united states is never beautiful during march , and it is usually relaxing in summer .
[196, 184, 95, 14, 123, 106, 81, 146, 210, 62, 169, 14, 129, 3, 208, 164, 150, 0, 0, 0]
—–French example—–
les états-unis est jamais belle en mars , et il est relaxant habituellement en été .
[264, 141, 114, 222, 6, 289, 329, 93, 145, 43, 114, 8, 159, 289, 32, 61, 1, 0, 0, 0, 0, 0, 0, 0, 0]

X = np.array(source_text_to_int)
Y = np.array(target_text_to_int)

3 构建模型

  • 模型输入 model_inputs
  • Encoder端 encoder_layer
  • Decoder端
    • Decoder输入端 decoder_layer_inputs
    • Decoder训练 decoder_layer_train
    • Decoder预测/推断 decoder_layer_inference
  • Seq2Seq模型

3.1 - 模型输入

def model_inputs():
    """
    构造输入

    返回:inputs, targets, learning_rate, source_sequence_len, target_sequence_len, max_target_sequence_len,类型为tensor
    """
    inputs = tf.placeholder(tf.int32, [None, None], name="inputs")
    targets = tf.placeholder(tf.int32, [None, None], name="targets")
    learning_rate = tf.placeholder(tf.float32, name="learning_rate")

    source_sequence_len = tf.placeholder(tf.int32, (None,), name="source_sequence_len")
    target_sequence_len = tf.placeholder(tf.int32, (None,), name="target_sequence_len")
    max_target_sequence_len = tf.placeholder(tf.int32, (None,), name="max_target_sequence_len")

    return inputs, targets, learning_rate, source_sequence_len, target_sequence_len, max_target_sequence_len

3.2 - Encoder端

def encoder_layer(rnn_inputs, rnn_size, rnn_num_layers,
                  source_sequence_len, source_vocab_size, encoder_embedding_size=100):
    """
    构造Encoder端

    @param rnn_inputs: rnn的输入
    @param rnn_size: rnn的隐层结点数
    @param rnn_num_layers: rnn的堆叠层数
    @param source_sequence_len: 英文句子序列的长度
    @param source_vocab_size: 英文词典的大小
    @param encoder_embedding_size: Encoder层中对单词进行词向量嵌入后的维度 
    """
    # 对输入的单词进行词向量嵌入
    encoder_embed = tf.contrib.layers.embed_sequence(rnn_inputs, source_vocab_size, encoder_embedding_size)

    # LSTM单元
    def get_lstm(rnn_size):
        lstm = tf.contrib.rnn.LSTMCell(rnn_size, initializer=tf.random_uniform_initializer(-0.1, 0.1, seed=123))
        return lstm

    # 堆叠rnn_num_layers层LSTM
    lstms = tf.contrib.rnn.MultiRNNCell([get_lstm(rnn_size) for _ in range(rnn_num_layers)])
    encoder_outputs, encoder_states = tf.nn.dynamic_rnn(lstms, encoder_embed, source_sequence_len, 
                                                        dtype=tf.float32)

    return encoder_outputs, encoder_states

3.2 - Decoder端

3.2.1 - Decoder Layer Inputs

def decoder_layer_inputs(target_data, target_vocab_to_int, batch_size):
    """
    对Decoder端的输入进行处理

    @param target_data: 法语数据的tensor
    @param target_vocab_to_int: 法语数据的词典到索引的映射
    @param batch_size: batch size
    """
    # 去掉batch中每个序列句子的最后一个单词
    ending = tf.strided_slice(target_data, [0, 0], [batch_size, -1], [1, 1])
    # 在batch中每个序列句子的前面添加”"
    decoder_inputs = tf.concat([tf.fill([batch_size, 1], target_vocab_to_int[""]), 
                                ending], 1)

    return decoder_inputs

3.2.2 - Decoder Traing

def decoder_layer_train(encoder_states, decoder_cell, decoder_embed,
                        target_sequence_len, max_target_sequence_len, output_layer):

    """
    Decoder端的训练

    @param encoder_states: Encoder端编码得到的Context Vector
    @param decoder_cell: Decoder端
    @param decoder_embed: Decoder端词向量嵌入后的输入
    @param target_sequence_len: 法语文本的长度
    @param max_target_sequence_len: 法语文本的最大长度
    @param output_layer: 输出层
    """

    # 生成helper对象
    training_helper = tf.contrib.seq2seq.TrainingHelper(inputs=decoder_embed,
                                                       sequence_length=target_sequence_len,
                                                       time_major=False)

    training_decoder = tf.contrib.seq2seq.BasicDecoder(decoder_cell,
                                                      training_helper,
                                                      encoder_states,
                                                      output_layer)

    training_decoder_outputs, _, _ = tf.contrib.seq2seq.dynamic_decode(training_decoder,
                                                                  impute_finished=True,
                                                                  maximum_iterations=max_target_sequence_len)

    return training_decoder_outputs

3.2.3 - Decoder Inference

def decoder_layer_infer(encoder_states, decoder_cell, decoder_embed, start_id, end_id, 
                        max_target_sequence_len, output_layer, batch_size):
    """
    Decoder端的预测/推断

    @param encoder_states: Encoder端编码得到的Context Vector
    @param decoder_cell: Decoder端
    @param decoder_embed: Decoder端词向量嵌入后的输入
    @param start_id: 句子起始单词的token id, 即""的编码
    @param end_id: 句子结束的token id,即""的编码
    @param max_target_sequence_len: 法语文本的最大长度
    @param output_layer: 输出层
    @batch_size: batch size
    """

    start_tokens = tf.tile(tf.constant([start_id], dtype=tf.int32), [batch_size], name="start_tokens")

    inference_helper = tf.contrib.seq2seq.GreedyEmbeddingHelper(decoder_embed,
                                                                start_tokens,
                                                                end_id)

    inference_decoder = tf.contrib.seq2seq.BasicDecoder(decoder_cell,
                                                       inference_helper,
                                                       encoder_states,
                                                       output_layer)

    inference_decoder_outputs, _, _ = tf.contrib.seq2seq.dynamic_decode(inference_decoder,
                                                                      impute_finished=True,
                                                                      maximum_iterations=max_target_sequence_len)

    return inference_decoder_outputs

3.2.4 - Decoder Layer

def decoder_layer(encoder_states, decoder_inputs, target_sequence_len, 
                   max_target_sequence_len, rnn_size, rnn_num_layers,
                   target_vocab_to_int, target_vocab_size, decoder_embedding_size, batch_size):
    """
    构造Decoder端

    @param encoder_states: Encoder端编码得到的Context Vector
    @param decoder_inputs: Decoder端的输入
    @param target_sequence_len: 法语文本的长度
    @param max_target_sequence_len: 法语文本的最大长度
    @param rnn_size: rnn隐层结点数
    @param rnn_num_layers: rnn堆叠层数
    @param target_vocab_to_int: 法语单词到token id的映射
    @param target_vocab_size: 法语词典的大小
    @param decoder_embedding_size: Decoder端词向量嵌入的大小
    @param batch_size: batch size
    """

    decoder_embeddings = tf.Variable(tf.random_uniform([target_vocab_size, decoder_embedding_size]))
    decoder_embed = tf.nn.embedding_lookup(decoder_embeddings, decoder_inputs)

    def get_lstm(rnn_size):
        lstm = tf.contrib.rnn.LSTMCell(rnn_size, initializer=tf.random_uniform_initializer(-0.1, 0.1, seed=456))
        return lstm

    decoder_cell = tf.contrib.rnn.MultiRNNCell([get_lstm(rnn_size) for _ in range(rnn_num_layers)])

    # output_layer logits
    output_layer = tf.layers.Dense(target_vocab_size)

    with tf.variable_scope("decoder"):
        training_logits = decoder_layer_train(encoder_states,
                                               decoder_cell,
                                               decoder_embed,
                                               target_sequence_len,
                                               max_target_sequence_len,
                                               output_layer)

    with tf.variable_scope("decoder", reuse=True):
        inference_logits = decoder_layer_infer(encoder_states,
                                               decoder_cell,
                                               decoder_embeddings,
                                               target_vocab_to_int[""],
                                               target_vocab_to_int[""],
                                                max_target_sequence_len,
                                                output_layer,
                                                batch_size)

    return training_logits, inference_logits

3.3 - Seq2Seq模型

def seq2seq_model(input_data, target_data, batch_size,
                 source_sequence_len, target_sequence_len, max_target_sentence_len,
                 source_vocab_size, target_vocab_size,
                 encoder_embedding_size, decoder_embeding_size,
                 rnn_size, rnn_num_layers, target_vocab_to_int):

    """
    构造Seq2Seq模型

    @param input_data: tensor of input data
    @param target_data: tensor of target data
    @param batch_size: batch size
    @param source_sequence_len: 英文语料的长度
    @param target_sequence_len: 法语语料的长度
    @param max_target_sentence_len: 法语的最大句子长度
    @param source_vocab_size: 英文词典的大小
    @param target_vocab_size: 法语词典的大小
    @param encoder_embedding_size: Encoder端词嵌入向量大小
    @param decoder_embedding_size: Decoder端词嵌入向量大小
    @param rnn_size: rnn隐层结点数
    @param rnn_num_layers: rnn堆叠层数
    @param target_vocab_to_int: 法语单词到token id的映射
    """
    _, encoder_states = encoder_layer(input_data, rnn_size, rnn_num_layers, source_sequence_len, 
                                      source_vocab_size, encoder_embedding_size)

    decoder_inputs = decoder_layer_inputs(target_data, target_vocab_to_int, batch_size)

    training_decoder_outputs, inference_decoder_outputs = decoder_layer(encoder_states,
                                                                       decoder_inputs,
                                                                      target_sequence_len,
                                                                       max_target_sentence_len,
                                                                      rnn_size,
                                                                      rnn_num_layers,
                                                                      target_vocab_to_int,
                                                                      target_vocab_size,
                                                                      decoder_embeding_size,
                                                                       batch_size)
    return training_decoder_outputs, inference_decoder_outputs

4. Training Model

4.1 - 设置参数

# Number of Epochs
epochs = 10
# Batch Size
batch_size = 128
# RNN Size
rnn_size = 128
# Number of Layers
rnn_num_layers = 1
# Embedding Size
encoder_embedding_size = 100
decoder_embedding_size = 100
# Learning Rate
lr = 0.001
# 每50轮打一次结果
display_step = 50

4.2 - 构建图

train_graph = tf.Graph()

with train_graph.as_default():
    inputs, targets, learning_rate, source_sequence_len, target_sequence_len, _ = model_inputs()

    max_target_sequence_len = 25
    train_logits, inference_logits = seq2seq_model(tf.reverse(inputs, [-1]),
                                                  targets,
                                                  batch_size,
                                                  source_sequence_len,
                                                  target_sequence_len,
                                                  max_target_sequence_len,
                                                  len(source_vocab_to_int),
                                                  len(target_vocab_to_int),
                                                  encoder_embedding_size,
                                                  decoder_embedding_size,
                                                  rnn_size,
                                                  rnn_num_layers,
                                                  target_vocab_to_int)

    training_logits = tf.identity(train_logits.rnn_output, name="logits")
    inference_logits = tf.identity(inference_logits.sample_id, name="predictions")

    masks = tf.sequence_mask(target_sequence_len, max_target_sequence_len, dtype=tf.float32, name="masks")

    with tf.name_scope("optimization"):
        cost = tf.contrib.seq2seq.sequence_loss(training_logits, targets, masks)

        optimizer = tf.train.AdamOptimizer(learning_rate)

        gradients = optimizer.compute_gradients(cost)
        clipped_gradients = [(tf.clip_by_value(grad, -1., 1.), var) for grad, var in gradients if grad is not None]
        train_op = optimizer.apply_gradients(clipped_gradients)

4.3 - 训练模型

def get_batches(sources, targets, batch_size):
    """
    获取batch
    """
    for batch_i in range(0, len(sources)//batch_size):
        start_i = batch_i * batch_size

        # Slice the right amount for the batch
        sources_batch = sources[start_i:start_i + batch_size]
        targets_batch = targets[start_i:start_i + batch_size]

        # Need the lengths for the _lengths parameters
        targets_lengths = []
        for target in targets_batch:
            targets_lengths.append(len(target))

        source_lengths = []
        for source in sources_batch:
            source_lengths.append(len(source))

        yield sources_batch, targets_batch, source_lengths, targets_lengths
with tf.Session(graph=train_graph) as sess:
    sess.run(tf.global_variables_initializer())

    for epoch_i in range(epochs):
        for batch_i, (source_batch, target_batch, sources_lengths, targets_lengths) in enumerate(
                get_batches(source_text_to_int, target_text_to_int, batch_size)):

            _, loss = sess.run(
                [train_op, cost],
                {inputs: source_batch,
                 targets: target_batch,
                 learning_rate: lr,
                 source_sequence_len: sources_lengths,
                 target_sequence_len: targets_lengths})


            if batch_i % display_step == 0 and batch_i > 0:


                batch_train_logits = sess.run(
                    inference_logits,
                    {inputs: source_batch,
                     source_sequence_len: sources_lengths,
                     target_sequence_len: targets_lengths})

                print('Epoch {:>3} Batch {:>4}/{} - Loss: {:>6.4f}'
                      .format(epoch_i, batch_i, len(source_text_to_int) // batch_size, loss))

    # Save Model
    saver = tf.train.Saver()
    saver.save(sess, "checkpoints/dev")
    print('Model Trained and Saved')

5. 预测

def sentence_to_seq(sentence, source_vocab_to_int):
    """
    将句子转化为数字编码
    """
    unk_idx = source_vocab_to_int[""]
    word_idx = [source_vocab_to_int.get(word, unk_idx) for word in sentence.lower().split()]

    return word_idx
translate_sentence_text = input("请输入句子:")

请输入句子:i dislike grapefruit , lemons , and peaches .

translate_sentence = sentence_to_seq(translate_sentence_text, source_vocab_to_int)

loaded_graph = tf.Graph()
with tf.Session(graph=loaded_graph) as sess:
    # Load saved model
    loader = tf.train.import_meta_graph('checkpoints/dev.meta')
    loader.restore(sess, tf.train.latest_checkpoint('./checkpoints'))

    input_data = loaded_graph.get_tensor_by_name('inputs:0')
    logits = loaded_graph.get_tensor_by_name('predictions:0')
    target_sequence_length = loaded_graph.get_tensor_by_name('target_sequence_len:0')
    source_sequence_length = loaded_graph.get_tensor_by_name('source_sequence_len:0')

    translate_logits = sess.run(logits, {input_data: [translate_sentence]*batch_size,
                                         target_sequence_length: [len(translate_sentence)*2]*batch_size,
                                         source_sequence_length: [len(translate_sentence)]*batch_size})[0]

print('【Input】')
print('  Word Ids:      {}'.format([i for i in translate_sentence]))
print('  English Words: {}'.format([source_int_to_vocab[i] for i in translate_sentence]))

print('\n【Prediction】')
print('  Word Ids:      {}'.format([i for i in translate_logits]))
print('  French Words: {}'.format([target_int_to_vocab[i] for i in translate_logits]))

print("\n【Full Sentence】")
print(" ".join([target_int_to_vocab[i] for i in translate_logits]))

INFO:tensorflow:Restoring parameters from ./checkpoints/dev
【Input】
Word Ids: [91, 4, 105, 210, 162, 210, 62, 63, 150]
English Words: [‘i’, ‘dislike’, ‘grapefruit’, ‘,’, ‘lemons’, ‘,’, ‘and’, ‘peaches’, ‘.’]
【Prediction】
Word Ids: [224, 238, 230, 93, 264, 263, 145, 264, 270, 61, 1]
French Words: [‘je’, “n’aime”, ‘pamplemousses’, ‘,’, ‘les’, ‘citrons’, ‘et’, ‘les’, ‘mangues’, ‘.’, ‘’]
【Full Sentence】
je n’aime pamplemousses , les citrons et les mangues .

你可能感兴趣的:(自然语言处理)