mapreduce 实现好友推荐

假设用户A有好友A1,A2,A3,则A1,A2,A3相互之间都可能通过好友A认识,是潜在的好友关系。如果用户B有好友A1,A2,B1,则A1,A2,B1相互之间都可能通过好友B认识。如下图所示:

mapreduce 实现好友推荐_第1张图片

如上图所示,A1,A2在潜在好友列表中出现2次,说明A1,A2有2个共同好友,在上图中即为A,B。当两个潜在好友如果共同好友越多,则他们可能认识的可能性就越大,彼此之间推介机会就越高。算法简单介绍如下:

首先需要遍历所有用户的好友列表生成两两间的潜在好友列表,计算所有用户潜在好友列表中同一对潜在好友出现的次数。如上图例子中A1,A2出现次数为2次。注意:A1:A2与A2:A1为相同的一对潜在好友,计算时应进行累加。再次计算同一个用户的潜在好友列表和出现的次数,如图中A1用户,A1与A2出现2次,A1与A3出现1次,A1与B1出现1次。如果只能给每个用户推介一个好友的话,A2与A1认识的可能性更大,优先推介A2。注意:还需要除去已经是该用户好友的潜在好友列表。如果A1与A2已经是好友关系了,则不需要再次推介。

 

java版实现,个人 github

 https://github.com/xiangyuguan/mapreduce_commocfriends

转载于:https://www.cnblogs.com/xiangyuguan/p/11047249.html

你可能感兴趣的:(mapreduce 实现好友推荐)