- 【im】如何解决消息的实时到达问题?
Bogon
TCP长连接的方式是怎么实现“当有消息需要发送给某个用户时,能够准确找到这个用户对应的网络连接”?首先用户有一个登陆的过程:(1)tcp客户端与服务端通过三次握手建立tcp连接;(2)基于该连接客户端发送登陆请求;(3)服务端对登陆请求进行解析和判断,如果合法,就将当前用户的uid和标识当前tcp连接的socket描述符(也就是fd)建立映射关系;(4)这个映射关系一般是保存在本地缓存或分布式缓存
- 大模型算法工程师技术路线全解析:从基础到资深的能力跃迁
Mr.小海
大模型算法数据挖掘人工智能机器学习深度学习机器翻译web3
文章目录大模型算法工程师技术路线全解析:从基础到资深的能力跃迁一、基础阶段(0-2年经验):构建核心知识体系与工程入门数学与机器学习基础编程与深度学习框架NLP与Transformer入门二、进阶阶段(2-4年经验):深化模型技术与工程落地能力大模型预训练与微调技术预训练原理:数据与任务的协同设计微调工具:参数高效适配与工程优化对齐实践:价值观优化与实证效果分布式训练与框架工具并行策略:多维度协同
- AI 智能运维,重塑大型企业软件运维:从自动化到智能化的进阶实践
AI、少年郎
人工智能运维自动化
一、引言:企业软件运维的智能化转型浪潮在数字化转型加速的背景下,大型企业软件架构日益复杂,微服务、多云环境、分布式系统的普及导致传统运维模式面临效率瓶颈。AI技术的渗透催生了智能运维(AIOps)的落地,通过机器学习、大模型、智能Agent等技术,实现从"人工救火"到"智能预防"的范式转变。本文结合头部企业实践,解析AI在运维领域的核心应用场景、技术架构及未来趋势,特别针对基础运维中流程重构、技术
- 前端面试专栏-工程化:28.团队协作与版本控制(Git)
爱分享的程序员
前端面试通关指南node.js前端javascript
欢迎来到前端面试通关指南专栏!从js精讲到框架到实战,渐进系统化学习,坚持解锁新技能,祝你轻松拿下心仪offer。前端面试通关指南专栏主页前端面试专栏规划详情项目实战与工程化模块-团队协作与版本控制(Git)在多人协作的项目中,代码的版本管理是保障开发效率与代码质量的核心环节。Git作为目前最流行的分布式版本控制系统,不仅能追踪代码变更历史,更能通过分支策略、协作流程规范团队工作方式。本文从实战角
- Windows平台下的Git版本控制实践:msysGit安装与使用
本文还有配套的精品资源,点击获取简介:msysGit是为Windows系统打造的Git版本控制系统,它允许用户在本地环境中方便地使用Git进行源代码管理和版本控制。Git是一个分布式版本控制系统,以其快速、高效和灵活性著称。msysGit通过模拟Unix-like环境来兼容Git命令,并提供图形界面工具和与Windows集成的特性,极大地提升了Windows用户的操作体验。本文将详细介绍msysG
- Kafka 集群架构与高可用方案设计(一)
计算机毕设定制辅导-无忧
#Kafkakafka架构分布式
Kafka集群架构与高可用方案设计的重要性在大数据和分布式系统的广阔领域中,Kafka已然成为了一个中流砥柱般的存在。它最初由LinkedIn开发,后捐赠给Apache软件基金会并成为顶级项目,凭借其卓越的高吞吐量、可扩展性以及持久性,被广泛应用于日志收集、实时数据处理、流计算、数据集成等诸多关键领域。在日志收集场景下,以大型互联网公司为例,每天都会产生海量的日志数据,如用户的访问记录、系统操作日
- 2024 年度分布式电力推进(DEP)系统发展探究
北京航通天下科技有限公司
无人机测试教学培训分布式电推进(DEP)动力系统无人机动力测试系统分布式电推进技术分布式动力系统测试平台DEP
分布式电力推进(DEP)的发明是为了尝试和改进现代飞机:我们如何提高飞机的效率?提高它的机动性?缩短它的起飞和着陆距离?DEP概念有望在提高性能的同时减少燃料消耗,在我们孜孜不倦地努力使航空业更具可持续性的时代,这是一个有吸引力的前景。在本文中,我们将介绍DEP的工作原理、优缺点以及值得关注的DEP飞机。此外,我们还提供用于测试DEP系统的解决方案。所有内容都包括在下面。目录什么是分布式电力推进(
- eVTOL分布式电推进(DEP)适航审定探究
北京航通天下科技有限公司
低空经济eVTOL测试配套分布式
从适航认证的角度来看,eVTOL动力系统采用分布式电推进(DEP)技术进行测试具有以下显著优势:一、提升系统冗余性与故障容限分布式电推进系统通过多个独立电机协同工作,即使部分电机失效,剩余电机仍能维持推力,保障飞行安全。这种冗余设计是适航认证中对关键系统可靠性要求的核心指标之一。例如,测试平台可模拟单个或多个电机故障场景,验证系统能否通过动态推力分配维持稳定飞行,从而满足适航对“故障安全”原则的要
- 灰度发布实战:在生产环境中安全迭代功能
荣华富贵8
程序员的知识储备2程序员的知识储备3consul服务发现算法网络wpf
摘要随着互联网服务规模的不断扩大,如何在保证系统稳定性和用户体验的前提下快速迭代新功能,已经成为大型分布式系统运维和开发团队面临的核心挑战。灰度发布(GreyRelease或CanaryRelease)作为一种渐进式发布策略,通过对少量用户或流量进行新版本试运行,实时监控关键指标、收集用户反馈,从而在生产环境中实现安全的功能迭代和风险管控。本文以某大型电商平台灰度发布实战为例,深入探讨技术原理、系
- 《[系统底层攻坚] 张冬〈大话存储终极版〉精读计划启动——存储架构原理深度拆解之旅》-系统性学习笔记(适合小白与IT工作人员)
谢郎Kobe
大活存储学习架构云计算硬件架构大数据
致所有存储技术探索者笔者近期将系统攻克存储领域经典巨作——张冬老师编著的《大话存储终极版》。这部近千页的存储系统圣经,以庖丁解牛的方式剖析了:存储硬件底层架构、分布式存储核心算法、超融合系统设计哲学等等。喜欢研究数据存储或者工作应用到存储的小伙伴,可以学习这本书。如果想利用碎片时间学习,也可以持续关注一下笔者不定期的章节解析。现在本人将此书的目录结构整理如下,未来笔者将按照顺序不定期更新【学习笔记
- Java 大视界 -- 基于 Java 的大数据分布式文件系统在科研数据存储与共享中的应用优化(187)
青云交
大数据新视界Java大视界Java+Python双剑合璧:AI大数据实战通关秘籍大数据大数据分布式文件系统科研数据存储科研数据共享应用优化HDFS数据分区
亲爱的朋友们,热烈欢迎来到青云交的博客!能与诸位在此相逢,我倍感荣幸。在这飞速更迭的时代,我们都渴望一方心灵净土,而我的博客正是这样温暖的所在。这里为你呈上趣味与实用兼具的知识,也期待你毫无保留地分享独特见解,愿我们于此携手成长,共赴新程!全网(微信公众号/CSDN/抖音/华为/支付宝/微博):青云交一、欢迎加入【福利社群】点击快速加入1:青云交技术圈福利社群(NEW)点击快速加入2:CSDN博客
- Python爬虫【二十四章】分布式爬虫架构实战:Scrapy-Redis亿级数据抓取方案设计
程序员_CLUB
Python入门到进阶python爬虫分布式
目录一、背景:单机爬虫的五大瓶颈二、Scrapy-Redis架构深度解析1.架构拓扑图2.核心组件对比三、环境搭建与核心配置1.基础环境部署2.Scrapy项目配置四、分布式爬虫核心实现1.改造原生Spider2.布隆过滤器集成五、五大性能优化策略1.动态优先级调整2.智能限速策略3.连接池优化4.数据分片存储5.心跳监控系统六、实战:新闻聚合平台数据抓取1.集群架构2.性能指标七、总结1.核心收
- 分布式爬虫:设计一个分布式爬虫架构来抓取大规模数据
Python爬虫项目
2025年爬虫实战项目分布式爬虫架构开发语言redis测试工具python
✨引言随着互联网信息的爆炸式增长,单机爬虫面对大规模网站数据抓取显得力不从心。特别是爬取新闻、商品、社交平台等网站时,经常遇到响应慢、IP被封等问题。为了解决这些问题,分布式爬虫系统应运而生。在本文中,我们将手把手带你打造一个基于Scrapy+Redis+Celery+FastAPI+Docker的现代分布式爬虫架构,实现任务调度、去重控制、分布式抓取与结果存储。本文代码均基于Python3.10
- Python医疗大数据实战:基于Scrapy-Redis的医院评价数据分布式爬虫设计与实现
Python爬虫项目
python开发语言爬虫seleniumscrapy
摘要本文将详细介绍如何使用Python构建一个高效的医院评价数据爬虫系统。我们将从爬虫基础讲起,逐步深入到分布式爬虫架构设计,使用Scrapy框架结合Redis实现分布式爬取,并采用最新的反反爬技术确保数据采集的稳定性。文章包含完整的代码实现、性能优化方案以及数据处理方法,帮助读者掌握医疗大数据采集的核心技术。关键词:Python爬虫、Scrapy-Redis、分布式爬虫、医疗大数据、反反爬技术1
- 互联网架构“高并发”
极课编程
一、什么是高并发高并发(HighConcurrency)是互联网分布式系统架构设计中必须考虑的因素之一,它通常是指,通过设计保证系统能够同时并行处理很多请求。高并发相关常用的一些指标有响应时间(ResponseTime),吞吐量(Throughput),每秒查询率QPS(QueryPerSecond),并发用户数等。响应时间:系统对请求做出响应的时间。例如系统处理一个HTTP请求需要200ms,这
- 分布式爬虫架构:Scrapy-Redis+Redis集群实现百万级数据采集
傻啦嘿哟
分布式爬虫架构
目录当单机爬虫遇到百万数据量架构设计核心原理分布式任务调度弹性去重机制Redis集群部署实践集群规模计算高可用配置Scrapy项目改造分布式爬虫编写百万级数据优化策略流量控制机制动态IP代理数据存储优化实战案例分析监控与维护集群健康检查日志分析架构演进方向当单机爬虫遇到百万数据量想象你正在搭建一个电商价格监控系统,需要每天抓取十万条商品数据。使用传统Scrapy框架时,单台服务器每天最多只能处理3
- Kafka面试问题1
小小少年Boy
1请说明什么是ApacheKafka?Kafka是分布式发布-订阅消息系统。Kafka是一个分布式的,可划分的,冗余备份的持久性的日志服务。它主要用于处理活跃的流式数据。它可以同时用于在线消息数据处理,和离线的数据文件处理。2、请说明什么是传统的消息传递方法?传统的消息传递方法包括两种:排队:在队列中,一组用户可以从服务器中读取消息,每条消息都发送给其中一个人。发布-订阅:在这个模型中,消息被广播
- 组件分享之后端组件——基于Java的分布式系统的延迟和容错组件(熔断组件)Hystrix
cn華少
组件分享之后端组件——基于Java的分布式系统的延迟和容错组件(熔断组件)Hystrix背景近期正在探索前端、后端、系统端各类常用组件与工具,对其一些常见的组件进行再次整理一下,形成标准化组件专题,后续该专题将包含各类语言中的一些常用组件。欢迎大家进行持续关注。组件基本信息组件:Hystrix开源协议:LICENSE内容本节我们分享一个基于Java的分布式系统的延迟和容错组件(熔断组件)Hystr
- 我的架构梦:(五十三) 分库分表实战及中间件之ShardingSphere实战
老周聊架构
我的架构梦
上一篇:我的架构梦:(五十二)分库分表实战及中间件之实战背景分库分表实战及中间件之ShardingSphere实战二、ShardingSphere实战1、ShardingSphere2、Sharding-JDBC3、数据分片剖析实战5、强制路由剖析实战6、数据脱敏剖析实战7、分布式事务剖析实战8、SPI加载剖析9、编排治理剖析10、Sharding-Proxy实战二、ShardingSphere实
- 基于CentOS的分布式GitLab+Jenkins+Docker架构:企业级CI/CD流水线实战全记录
loopdeloop
其他centos分布式docker
引言:从单机到分布式容器架构的演进在传统Web应用部署中,我们常常面临环境不一致、部署效率低下等问题。我曾经维护过一个需要手动在5台服务器上重复部署的游戏项目,每次发布都如同走钢丝。本文将详细分享如何基于CentOS系统,构建完整的分布式Docker架构,实现GitLab+Jenkins+生产环境的三节点CI/CD流水线,最终成功部署Web游戏项目的全过程。第一部分:架构设计与环境规划1.1分布式
- 七、Zabbix — Proxy分布式监控
胖胖不胖、
《Zabbix速学即学即用》zabbix分布式服务器运维监控
目录配置Zabbix-proxy代理1.安装代理2.安装并配置数据库(proxy不能与zabbix-server共享数据库)3.发送zabbix-server源码包中初始化脚本到proxy主机并导入数据库4.修改代理配置文件5.web页面添加并配置代理Zabbix-agent客户端配置1.修改配置文件2.web页面修改,把这些主机修改为通过代理获取数据减少zabbix-server压力便于多地设备
- 全链路压测:影子库与影子表之争
阿里巴巴中间件
数据库分布式java人工智能大数据
01业界盛传的全链路压测是什么Aliware全链路压测诞生于阿里巴巴双11备战过程,如果说双11大促是阿里业务的“期末考试”,全链路压测就是大考前的“模拟考试”,诞生后被誉为双11稳定性保障的“核武器”。全链路压测通过在生产环境对业务大流量场景进行高仿真模拟,获取最真实的线上实际承载能力、执行精准的容量规划,确保系统可用性。分布式架构和业务快速发展给业务系统带来了不确定性。分布式环境的任意节点都可
- 分布式定时器:原理设计与技术挑战
你一身傲骨怎能输
架构设计分布式
文章摘要分布式定时器用于在分布式系统中可靠、准确地触发定时任务,常见实现方案包括:基于数据库/消息队列的定时扫描、分布式任务调度框架(如Quartz集群、xxl-job)、时间轮/延迟队列(如Redis/Kafka)以及Zookeeper/Etcd协调服务。主要技术挑战包括时钟同步、任务幂等、高可用、负载均衡和故障恢复等。核心难点在于保证任务唯一性、调度精度与分布式一致性,技术选型需权衡轻量级(R
- 应用层流量与缓存累积延迟解析
你一身傲骨怎能输
计算机网络缓存
文章摘要应用层流量指OSI模型中应用层协议(如HTTP、gRPC)产生的数据交互,常见于Web请求、微服务通信等场景。缓存累积延迟指多级缓存或消息队列机制中,各级延迟叠加导致数据更新滞后,例如数据库更新后,因消息队列、缓存刷新等环节延迟,用户最终看到的数据可能滞后数秒。两者分别描述了网络通信的数据流机制和分布式系统中的延迟问题。1.应用层流量应用层流量,一般指的是在网络通信的OSI七层模型中,**
- RedissonLock-tryLock-续期
周末吃鱼
redisson
redisson版本3.16.61.什么是看门狗Redisson提供的分布式锁是支持锁自动续期的,也就是说,如果线程仍旧没有执行完,那么redisson会自动给redis中的目标key延长超时时间,这在Redisson中称之为WatchDog机制。默认情况下,看门狗的检查锁的超时时间是30秒钟,也可以通过修改Config.lockWatchdogTimeout来另行指定。2.什么情况会续期什么情况
- golang的编译过程分析
转载自:https://halfrost.com/go_command/引言Go语言这两年在语言排行榜上的上升势头非常猛,Go语言虽然是静态编译型语言,但是它却拥有脚本化的语法,支持多种编程范式(函数式和面向对象)。Go语言最最吸引人的地方可能是其原生支持并发编程(语言层面原生支持和通过第三方库支持是有很大区别的)。Go语言的对网络通信、并发和并行编程的支持度极高,从而可以更好地利用大量的分布式和
- Redisson:强大的Redis Java客户端库
大宝S**蜜
java
Redisson:强大的RedisJava客户端库在Java应用程序中,Redis经常作为缓存、消息代理、分布式锁等功能的首选。然而,直接使用Redis的原生协议或Jedis等简单的Java客户端可能不足以满足复杂的分布式和并发需求。这时,Redisson作为一个功能强大的RedisJava客户端库,提供了许多高级功能和易用性改进,成为开发者的有力工具。1.Redisson简介Redisson是一
- 深入理解传输对象模式:优化分布式系统数据交互的利器
在现代分布式系统架构中,如何高效地在不同层或不同服务间传输数据是一个关键问题。频繁的网络调用会导致系统性能下降,用户体验受损。传输对象模式(TransferObjectPattern)正是为解决这一问题而生的经典设计模式。本文将全面剖析传输对象模式的原理、实现、应用场景及最佳实践,帮助开发者掌握这一优化系统性能的利器。一、传输对象模式概述1.1模式定义传输对象模式(也称为值对象模式、数据载体模式或
- Redis深度解析:从缓存到分布式系统的核心引擎
JouJz
缓存redis数据库
Redis深度解析:从缓存到分布式系统的核心引擎引言:数据时代的极速引擎在当今高并发、低延迟的数字世界中,Redis以其亚毫秒级响应、丰富数据结构和高可用架构,成为现代系统架构的核心组件。从简单的键值存储到复杂的分布式锁实现,从缓存加速到实时分析,Redis的应用场景已远超传统缓存范畴。本文将深入剖析Redis的核心原理、高级特性和最佳实践,带您全面理解这一改变数据处理方式的开源神器。一、Redi
- 9个基于MATLAB 事件触发控制
985计算机硕士
matlabmatlab开发语言
9个基于MATLAB事件触发控制1线性多智能体系统一致性的分布式动态事件触发控制方法。2固定拓扑和切换拓扑下多智能体系统的分布式动态事件触发一致性控制.3有限时间一致性的分布式事件驱动控制.4多智能体系统的分布式事件触发控制.5多代理网络中基于事件的协议。6非线性不确定性多智能体系统的定时事件触发一致性控制.7线性多智能体网络的全分布式事件触发协议.8非理想一般线性多智能体系统基于观测器的事件触发
- Spring的注解积累
yijiesuifeng
spring注解
用注解来向Spring容器注册Bean。
需要在applicationContext.xml中注册:
<context:component-scan base-package=”pagkage1[,pagkage2,…,pagkageN]”/>。
如:在base-package指明一个包
<context:component-sc
- 传感器
百合不是茶
android传感器
android传感器的作用主要就是来获取数据,根据得到的数据来触发某种事件
下面就以重力传感器为例;
1,在onCreate中获得传感器服务
private SensorManager sm;// 获得系统的服务
private Sensor sensor;// 创建传感器实例
@Override
protected void
- [光磁与探测]金吕玉衣的意义
comsci
这是一个古代人的秘密:现在告诉大家
信不信由你们:
穿上金律玉衣的人,如果处于灵魂出窍的状态,可以飞到宇宙中去看星星
这就是为什么古代
- 精简的反序打印某个数
沐刃青蛟
打印
以前看到一些让求反序打印某个数的程序。
比如:输入123,输出321。
记得以前是告诉你是几位数的,当时就抓耳挠腮,完全没有思路。
似乎最后是用到%和/方法解决的。
而今突然想到一个简短的方法,就可以实现任意位数的反序打印(但是如果是首位数或者尾位数为0时就没有打印出来了)
代码如下:
long num, num1=0;
- PHP:6种方法获取文件的扩展名
IT独行者
PHP扩展名
PHP:6种方法获取文件的扩展名
1、字符串查找和截取的方法
1
$extension
=
substr
(
strrchr
(
$file
,
'.'
), 1);
2、字符串查找和截取的方法二
1
$extension
=
substr
- 面试111
文强chu
面试
1事务隔离级别有那些 ,事务特性是什么(问到一次)
2 spring aop 如何管理事务的,如何实现的。动态代理如何实现,jdk怎么实现动态代理的,ioc是怎么实现的,spring是单例还是多例,有那些初始化bean的方式,各有什么区别(经常问)
3 struts默认提供了那些拦截器 (一次)
4 过滤器和拦截器的区别 (频率也挺高)
5 final,finally final
- XML的四种解析方式
小桔子
domjdomdom4jsax
在平时工作中,难免会遇到把 XML 作为数据存储格式。面对目前种类繁多的解决方案,哪个最适合我们呢?在这篇文章中,我对这四种主流方案做一个不完全评测,仅仅针对遍历 XML 这块来测试,因为遍历 XML 是工作中使用最多的(至少我认为)。 预 备 测试环境: AMD 毒龙1.4G OC 1.5G、256M DDR333、Windows2000 Server
- wordpress中常见的操作
aichenglong
中文注册wordpress移除菜单
1 wordpress中使用中文名注册解决办法
1)使用插件
2)修改wp源代码
进入到wp-include/formatting.php文件中找到
function sanitize_user( $username, $strict = false
- 小飞飞学管理-1
alafqq
管理
项目管理的下午题,其实就在提出问题(挑刺),分析问题,解决问题。
今天我随意看下10年上半年的第一题。主要就是项目经理的提拨和培养。
结合我自己经历写下心得
对于公司选拔和培养项目经理的制度有什么毛病呢?
1,公司考察,选拔项目经理,只关注技术能力,而很少或没有关注管理方面的经验,能力。
2,公司对项目经理缺乏必要的项目管理知识和技能方面的培训。
3,公司对项目经理的工作缺乏进行指
- IO输入输出部分探讨
百合不是茶
IO
//文件处理 在处理文件输入输出时要引入java.IO这个包;
/*
1,运用File类对文件目录和属性进行操作
2,理解流,理解输入输出流的概念
3,使用字节/符流对文件进行读/写操作
4,了解标准的I/O
5,了解对象序列化
*/
//1,运用File类对文件目录和属性进行操作
//在工程中线创建一个text.txt
- getElementById的用法
bijian1013
element
getElementById是通过Id来设置/返回HTML标签的属性及调用其事件与方法。用这个方法基本上可以控制页面所有标签,条件很简单,就是给每个标签分配一个ID号。
返回具有指定ID属性值的第一个对象的一个引用。
语法:
&n
- 励志经典语录
bijian1013
励志人生
经典语录1:
哈佛有一个著名的理论:人的差别在于业余时间,而一个人的命运决定于晚上8点到10点之间。每晚抽出2个小时的时间用来阅读、进修、思考或参加有意的演讲、讨论,你会发现,你的人生正在发生改变,坚持数年之后,成功会向你招手。不要每天抱着QQ/MSN/游戏/电影/肥皂剧……奋斗到12点都舍不得休息,看就看一些励志的影视或者文章,不要当作消遣;学会思考人生,学会感悟人生
- [MongoDB学习笔记三]MongoDB分片
bit1129
mongodb
MongoDB的副本集(Replica Set)一方面解决了数据的备份和数据的可靠性问题,另一方面也提升了数据的读写性能。MongoDB分片(Sharding)则解决了数据的扩容问题,MongoDB作为云计算时代的分布式数据库,大容量数据存储,高效并发的数据存取,自动容错等是MongoDB的关键指标。
本篇介绍MongoDB的切片(Sharding)
1.何时需要分片
&nbs
- 【Spark八十三】BlockManager在Spark中的使用场景
bit1129
manager
1. Broadcast变量的存储,在HttpBroadcast类中可以知道
2. RDD通过CacheManager存储RDD中的数据,CacheManager也是通过BlockManager进行存储的
3. ShuffleMapTask得到的结果数据,是通过FileShuffleBlockManager进行管理的,而FileShuffleBlockManager最终也是使用BlockMan
- yum方式部署zabbix
ronin47
yum方式部署zabbix
安装网络yum库#rpm -ivh http://repo.zabbix.com/zabbix/2.4/rhel/6/x86_64/zabbix-release-2.4-1.el6.noarch.rpm 通过yum装mysql和zabbix调用的插件还有agent代理#yum install zabbix-server-mysql zabbix-web-mysql mysql-
- Hibernate4和MySQL5.5自动创建表失败问题解决方法
byalias
J2EEHibernate4
今天初学Hibernate4,了解了使用Hibernate的过程。大体分为4个步骤:
①创建hibernate.cfg.xml文件
②创建持久化对象
③创建*.hbm.xml映射文件
④编写hibernate相应代码
在第四步中,进行了单元测试,测试预期结果是hibernate自动帮助在数据库中创建数据表,结果JUnit单元测试没有问题,在控制台打印了创建数据表的SQL语句,但在数据库中
- Netty源码学习-FrameDecoder
bylijinnan
javanetty
Netty 3.x的user guide里FrameDecoder的例子,有几个疑问:
1.文档说:FrameDecoder calls decode method with an internally maintained cumulative buffer whenever new data is received.
为什么每次有新数据到达时,都会调用decode方法?
2.Dec
- SQL行列转换方法
chicony
行列转换
create table tb(终端名称 varchar(10) , CEI分值 varchar(10) , 终端数量 int)
insert into tb values('三星' , '0-5' , 74)
insert into tb values('三星' , '10-15' , 83)
insert into tb values('苹果' , '0-5' , 93)
- 中文编码测试
ctrain
编码
循环打印转换编码
String[] codes = {
"iso-8859-1",
"utf-8",
"gbk",
"unicode"
};
for (int i = 0; i < codes.length; i++) {
for (int j
- hive 客户端查询报堆内存溢出解决方法
daizj
hive堆内存溢出
hive> select * from t_test where ds=20150323 limit 2;
OK
Exception in thread "main" java.lang.OutOfMemoryError: Java heap space
问题原因: hive堆内存默认为256M
这个问题的解决方法为:
修改/us
- 人有多大懒,才有多大闲 (评论『卓有成效的程序员』)
dcj3sjt126com
程序员
卓有成效的程序员给我的震撼很大,程序员作为特殊的群体,有的人可以这么懒, 懒到事情都交给机器去做 ,而有的人又可以那么勤奋,每天都孜孜不倦得做着重复单调的工作。
在看这本书之前,我属于勤奋的人,而看完这本书以后,我要努力变成懒惰的人。
不要在去庞大的开始菜单里面一项一项搜索自己的应用程序,也不要在自己的桌面上放置眼花缭乱的快捷图标
- Eclipse简单有用的配置
dcj3sjt126com
eclipse
1、显示行号 Window -- Prefences -- General -- Editors -- Text Editors -- show line numbers
2、代码提示字符 Window ->Perferences,并依次展开 Java -> Editor -> Content Assist,最下面一栏 auto-Activation
- 在tomcat上面安装solr4.8.0全过程
eksliang
Solrsolr4.0后的版本安装solr4.8.0安装
转载请出自出处:
http://eksliang.iteye.com/blog/2096478
首先solr是一个基于java的web的应用,所以安装solr之前必须先安装JDK和tomcat,我这里就先省略安装tomcat和jdk了
第一步:当然是下载去官网上下载最新的solr版本,下载地址
- Android APP通用型拒绝服务、漏洞分析报告
gg163
漏洞androidAPP分析
点评:记得曾经有段时间很多SRC平台被刷了大量APP本地拒绝服务漏洞,移动安全团队爱内测(ineice.com)发现了一个安卓客户端的通用型拒绝服务漏洞,来看看他们的详细分析吧。
0xr0ot和Xbalien交流所有可能导致应用拒绝服务的异常类型时,发现了一处通用的本地拒绝服务漏洞。该通用型本地拒绝服务可以造成大面积的app拒绝服务。
针对序列化对象而出现的拒绝服务主要
- HoverTree项目已经实现分层
hvt
编程.netWebC#ASP.ENT
HoverTree项目已经初步实现分层,源代码已经上传到 http://hovertree.codeplex.com请到SOURCE CODE查看。在本地用SQL Server 2008 数据库测试成功。数据库和表请参考:http://keleyi.com/a/bjae/ue6stb42.htmHoverTree是一个ASP.NET 开源项目,希望对你学习ASP.NET或者C#语言有帮助,如果你对
- Google Maps API v3: Remove Markers 移除标记
天梯梦
google maps api
Simply do the following:
I. Declare a global variable:
var markersArray = [];
II. Define a function:
function clearOverlays() {
for (var i = 0; i < markersArray.length; i++ )
- jQuery选择器总结
lq38366
jquery选择器
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
- 基础数据结构和算法六:Quick sort
sunwinner
AlgorithmQuicksort
Quick sort is probably used more widely than any other. It is popular because it is not difficult to implement, works well for a variety of different kinds of input data, and is substantially faster t
- 如何让Flash不遮挡HTML div元素的技巧_HTML/Xhtml_网页制作
刘星宇
htmlWeb
今天在写一个flash广告代码的时候,因为flash自带的链接,容易被当成弹出广告,所以做了一个div层放到flash上面,这样链接都是a触发的不会被拦截,但发现flash一直处于div层上面,原来flash需要加个参数才可以。
让flash置于DIV层之下的方法,让flash不挡住飘浮层或下拉菜单,让Flash不档住浮动对象或层的关键参数:wmode=opaque。
方法如下:
- Mybatis实用Mapper SQL汇总示例
wdmcygah
sqlmysqlmybatis实用
Mybatis作为一个非常好用的持久层框架,相关资料真的是少得可怜,所幸的是官方文档还算详细。本博文主要列举一些个人感觉比较常用的场景及相应的Mapper SQL写法,希望能够对大家有所帮助。
不少持久层框架对动态SQL的支持不足,在SQL需要动态拼接时非常苦恼,而Mybatis很好地解决了这个问题,算是框架的一大亮点。对于常见的场景,例如:批量插入/更新/删除,模糊查询,多条件查询,联表查询,