python模拟随机游走

 

在python中,可以利用数组操作来模拟随机游走。

 

下面是一个单一的200步随机游走的例子,从0开始,步长为1和-1,且以相等的概率出现。纯Python方式实现,使用了内建的random 模块:

复制代码
# 随机游走
import matplotlib.pyplot as plt
import random

position = 0
walk = [position]
steps = 200
for i in range(steps):
    step = 1 if random.randint(0, 1) else -1
    position += step
    walk.append(position)

fig = plt.figure()
ax = fig.add_subplot(111)
ax.plot(walk) plt.show()
复制代码

python模拟随机游走_第1张图片

 

 

第二种方式:简单的把随机步长累积起来并且可以可以使用一个数组表达式来计算。因此,我用 np.random 模块去200次硬币翻转,设置它们为1和-1,并计算累计和:

复制代码
# 随机游走
import matplotlib.pyplot as plt
import numpy as np

nsteps = 200
draws = np.random.randint(0, 2, size=nsteps)
steps = np.where(draws > 0, 1, -1)
walk = steps.cumsum()

fig = plt.figure()
ax = fig.add_subplot(111)
ax.plot(walk)
plt.show()
复制代码

python模拟随机游走_第2张图片

 

 

一次模拟多个随机游走

复制代码
# 随机游走
import matplotlib.pyplot as plt
import numpy as np

nwalks = 5
nsteps = 200
draws = np.random.randint(0, 2, size=(nwalks, nsteps)) # 0 or 1
steps = np.where(draws > 0, 1, -1)
walks = steps.cumsum(1)

fig = plt.figure()
ax = fig.add_subplot(111)
for i in range(nwalks):
    ax.plot(walks[i])

plt.show()
复制代码

python模拟随机游走_第3张图片

 

 

 

当然,还可以大胆的试验其它的分布的步长,而不是相等大小的硬币翻转。你只需要使用一个不同的随机数生成函数,如 normal 来产生相同均值和标准偏差的正态分布:

steps = np.random.normal(loc=0, scale=0.25, size=(nwalks, nsteps))

python模拟随机游走_第4张图片

 

本文转自罗兵博客园博客,原文链接:http://www.cnblogs.com/hhh5460/p/4356635.html ,如需转载请自行联系原作者

你可能感兴趣的:(python模拟随机游走)