Palmer启发式算法

参考

gatt、makespan

Palmer启发式算法

# -*- coding:utf-8 -*-
import numpy as np
import time
from .tool import makespan_value


class Palmer:
	def slope_index(self, data):
		slope_index = np.zeros([2, data.shape[1]])
		slope_index[0] = data[0]
		m = data.shape[0] - 1
		for job in range(data.shape[1]):
			for machine in range(1, m + 1):
				slope_index[1, job] += (machine - (m + 1) / 2) * data[machine, job]
		return slope_index
	
	def sort_slope(self, slope_index):
		sort_slope = slope_index[:, np.argsort(-slope_index[1])]
		return sort_slope
	
	def palmer_data(self, data, sort_slope):
		index = np.array(sort_slope[0], dtype=int) - 1
		palmer_data = data[:, index][0]
		return palmer_data


def palmer(data, draw=0):
	"""
	:param data: n行m列,第一行工序编号,其他是加工时间
	:return:
	"""
	data = data[:, np.argsort(data[0])]
	new = Palmer()
	start_time = time.time()
	slope_index = new.slope_index(data)
	sort_slope = new.sort_slope(slope_index)
	palmer_data = new.palmer_data(data, sort_slope)
	end_time = time.time()
	print("Time used: %s" % (end_time - start_time))
	print("The minimum makespan: %s" % makespan_value(data[:, palmer_data - 1]))
	if draw:
		import matplotlib.pyplot as plt
		from .tool import gatt
		gatt(data[:, palmer_data - 1])
		plt.show()
	return palmer_data


你可能感兴趣的:(NPprojrcts)