[深度学习] FCN在TensorFlow上的实现

FCN在TensorFlow上的实现

参考 https://blog.csdn.net/MOU_IT/article/details/81073149 ,代码来自 https://github.com/shekkizh/FCN.tensorflow ,自己开始一点点在Jupyter上试,20180813对visualize模式进行了试验

数据 The model was applied on the Scene Parsing Challenge dataset provided by MIT http://sceneparsing.csail.mit.edu/ ,数据说明 https://github.com/CSAILVision/sceneparsing#overview-of-scene-parsing-benchmark ,数据和模型如果不提前下载,程序里也会下载

百度云分享一下:

  • Training Set/Validation Set链接: https://pan.baidu.com/s/1hDGlYIiCDlbi4VK_37FarQ 密码: gwhe
  • Test set链接: https://pan.baidu.com/s/1BZJM9ccrgtNLz0xT43nqUA 密码: x5hi
  • VGG网络的权重参数链接: https://pan.baidu.com/s/1kl4CnXc8xcPawQf0WoOZ4Q 密码: du1h

FCN.py

from __future__ import print_function
import tensorflow as tf
import numpy as np

import TensorflowUtils as utils
import read_MITSceneParsingData as scene_parsing
import datetime
import BatchDatsetReader as dataset
from six.moves import xrange

FLAGS = tf.flags.FLAGS
tf.flags.DEFINE_integer("batch_size", "2", "batch size for training")
tf.flags.DEFINE_string("logs_dir", "logs/", "path to logs directory")
tf.flags.DEFINE_string("data_dir", "data/", "path to dataset")
tf.flags.DEFINE_float("learning_rate", "1e-4", "Learning rate for Adam Optimizer")
tf.flags.DEFINE_string("model_dir", "model/", "Path to vgg model mat")
tf.flags.DEFINE_bool('debug', "False", "Debug mode: True/ False")
# 选择模式,现有train和visualize,test在下面没有找到对应的代码
# train会处理训练集,并生成模型,保存在logs中
# visualize会处理valid集合,并使用logs中生成的模型,可以参考这部分代码完成自己的分割程序
tf.flags.DEFINE_string('mode', "train", "Mode train/ test/ visualize")

MODEL_URL = 'http://www.vlfeat.org/matconvnet/models/beta16/imagenet-vgg-verydeep-19.mat'

# 迭代的最大次数
MAX_ITERATION = int(1e3 + 1)
# 分类的个数
NUM_OF_CLASSESS = 151
# 图片尺寸
IMAGE_SIZE = 224

# vgg_net:根据权重构建VGG网络
def vgg_net(weights, image):
    layers = (
        'conv1_1', 'relu1_1', 'conv1_2', 'relu1_2', 'pool1',
        'conv2_1', 'relu2_1', 'conv2_2', 'relu2_2', 'pool2',
        'conv3_1', 'relu3_1', 'conv3_2', 'relu3_2', 'conv3_3',
        'relu3_3', 'conv3_4', 'relu3_4', 'pool3',
        'conv4_1', 'relu4_1', 'conv4_2', 'relu4_2', 'conv4_3',
        'relu4_3', 'conv4_4', 'relu4_4', 'pool4',
        'conv5_1', 'relu5_1', 'conv5_2', 'relu5_2', 'conv5_3',
        'relu5_3', 'conv5_4', 'relu5_4'
    )

    net = {}
    current = image
    for i, name in enumerate(layers):
        kind = name[:4]
        # 卷积层
        if kind == 'conv':
            kernels, bias = weights[i][0][0][0][0]
            # matconvnet: weights are [width, height, in_channels, out_channels]
            # tensorflow: weights are [height, width, in_channels, out_channels]
            kernels = utils.get_variable(np.transpose(kernels, (1, 0, 2, 3)), name=name + "_w")
            bias = utils.get_variable(bias.reshape(-1), name=name + "_b")
            current = utils.conv2d_basic(current, kernels, bias)
        # 激活函数
        elif kind == 'relu':
            current = tf.nn.relu(current, name=name)
            if FLAGS.debug:
                utils.add_activation_summary(current)
        # 池化
        elif kind == 'pool':
            current = utils.avg_pool_2x2(current)
        net[name] = current

    return net

# 定义Semantic segmentation network,使用VGG结构
def inference(image, keep_prob):
    """
    Semantic segmentation network definition
    :param image: input image. Should have values in range 0-255
    :param keep_prob:
    :return:
    """
    print("setting up vgg initialized conv layers ...")
    # download Model,建议提前下好,这样不会重新下载
    # 关于model的结构,可以看
    model_data = utils.get_model_data(FLAGS.model_dir, MODEL_URL)

    # 获取图片像素均值
    mean = model_data['normalization'][0][0][0]
    mean_pixel = np.mean(mean, axis=(0, 1))

    # layers字段,所有的权重都存在这里面
    # 关于numpy的squeeze,可以看 https://blog.csdn.net/zenghaitao0128/article/details/78512715
    weights = np.squeeze(model_data['layers'])

    # image - mean_pixel:每一channel的均值
    processed_image = utils.process_image(image, mean_pixel)

    # 以inference为名的命名空间
    with tf.variable_scope("inference"):
        # 构建VGG网络
        image_net = vgg_net(weights, processed_image)
        # 最后一层
        conv_final_layer = image_net["conv5_3"]
        # 最后添加一层2*2的max pool
        pool5 = utils.max_pool_2x2(conv_final_layer)

        # 再加conv6,conv7,conv8三个卷基层,都用的ReLU
        W6 = utils.weight_variable([7, 7, 512, 4096], name="W6")
        b6 = utils.bias_variable([4096], name="b6")
        conv6 = utils.conv2d_basic(pool5, W6, b6)
        relu6 = tf.nn.relu(conv6, name="relu6")
        if FLAGS.debug:
            utils.add_activation_summary(relu6)
        relu_dropout6 = tf.nn.dropout(relu6, keep_prob=keep_prob)

        W7 = utils.weight_variable([1, 1, 4096, 4096], name="W7")
        b7 = utils.bias_variable([4096], name="b7")
        conv7 = utils.conv2d_basic(relu_dropout6, W7, b7)
        relu7 = tf.nn.relu(conv7, name="relu7")
        if FLAGS.debug:
            utils.add_activation_summary(relu7)
        relu_dropout7 = tf.nn.dropout(relu7, keep_prob=keep_prob)

        W8 = utils.weight_variable([1, 1, 4096, NUM_OF_CLASSESS], name="W8")
        b8 = utils.bias_variable([NUM_OF_CLASSESS], name="b8")
        conv8 = utils.conv2d_basic(relu_dropout7, W8, b8)
        # annotation_pred1 = tf.argmax(conv8, dimension=3, name="prediction1")

        # now to upscale to actual image size
        # 进行deconv操作,依次获取前面卷积前的图片大小
        deconv_shape1 = image_net["pool4"].get_shape()
        W_t1 = utils.weight_variable([4, 4, deconv_shape1[3].value, NUM_OF_CLASSESS], name="W_t1")
        b_t1 = utils.bias_variable([deconv_shape1[3].value], name="b_t1")
        conv_t1 = utils.conv2d_transpose_strided(conv8, W_t1, b_t1, output_shape=tf.shape(image_net["pool4"]))
        fuse_1 = tf.add(conv_t1, image_net["pool4"], name="fuse_1")

        deconv_shape2 = image_net["pool3"].get_shape()
        W_t2 = utils.weight_variable([4, 4, deconv_shape2[3].value, deconv_shape1[3].value], name="W_t2")
        b_t2 = utils.bias_variable([deconv_shape2[3].value], name="b_t2")
        conv_t2 = utils.conv2d_transpose_strided(fuse_1, W_t2, b_t2, output_shape=tf.shape(image_net["pool3"]))
        fuse_2 = tf.add(conv_t2, image_net["pool3"], name="fuse_2")

        shape = tf.shape(image)
        deconv_shape3 = tf.stack([shape[0], shape[1], shape[2], NUM_OF_CLASSESS])
        W_t3 = utils.weight_variable([16, 16, NUM_OF_CLASSESS, deconv_shape2[3].value], name="W_t3")
        b_t3 = utils.bias_variable([NUM_OF_CLASSESS], name="b_t3")
        conv_t3 = utils.conv2d_transpose_strided(fuse_2, W_t3, b_t3, output_shape=deconv_shape3, stride=8)

        annotation_pred = tf.argmax(conv_t3, dimension=3, name="prediction")

    return tf.expand_dims(annotation_pred, dim=3), conv_t3

def train(loss_val, var_list):
    optimizer = tf.train.AdamOptimizer(FLAGS.learning_rate)
    grads = optimizer.compute_gradients(loss_val, var_list=var_list)
    if FLAGS.debug:
        # print(len(var_list))
        for grad, var in grads:
            utils.add_gradient_summary(grad, var)
    return optimizer.apply_gradients(grads)

# 主函数
def main(argv=None):
    # placeholder 定义输入,keep_probability隐含层节点保持工作的概率,这是个什么效果
    keep_probability = tf.placeholder(tf.float32, name="keep_probabilty")
    # 输入图像,3是指channel?
    image = tf.placeholder(tf.float32, shape=[None, IMAGE_SIZE, IMAGE_SIZE, 3], name="input_image")
    # 标注图像,只有1个channel
    annotation = tf.placeholder(tf.int32, shape=[None, IMAGE_SIZE, IMAGE_SIZE, 1], name="annotation")
    # 构建训练模型
    pred_annotation, logits = inference(image, keep_probability)
    tf.summary.image("input_image", image, max_outputs=2)
    tf.summary.image("ground_truth", tf.cast(annotation, tf.uint8), max_outputs=2)
    tf.summary.image("pred_annotation", tf.cast(pred_annotation, tf.uint8), max_outputs=2)
    # loss函数,
    loss = tf.reduce_mean((tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits, labels=tf.squeeze(annotation, squeeze_dims=[3]),name="entropy")))
    loss_summary = tf.summary.scalar("entropy", loss)
    # 优化器
    trainable_var = tf.trainable_variables()
    if FLAGS.debug:
        for var in trainable_var:
            utils.add_to_regularization_and_summary(var)
    train_op = train(loss, trainable_var)

    print("Setting up summary op...")
    summary_op = tf.summary.merge_all()

    # 会下载Train和Valid数据
    print("Setting up image reader...")
    train_records, valid_records = scene_parsing.read_dataset(FLAGS.data_dir)
    print("Train Set Size: " + str(len(train_records)))
    print("Valid Set Size: " + str(len(valid_records)))

    print("Setting up dataset reader")
    image_options = {'resize': True, 'resize_size': IMAGE_SIZE}
    if FLAGS.mode == 'train':
        train_dataset_reader = dataset.BatchDatset(train_records, image_options)
    validation_dataset_reader = dataset.BatchDatset(valid_records, image_options)

    sess = tf.Session()

    print("Setting up Saver...")
    saver = tf.train.Saver()

    # create two summary writers to show training loss and validation loss in the same graph
    # need to create two folders 'train' and 'validation' inside FLAGS.logs_dir
    train_writer = tf.summary.FileWriter(FLAGS.logs_dir + '/train', sess.graph)
    validation_writer = tf.summary.FileWriter(FLAGS.logs_dir + '/validation')

    sess.run(tf.global_variables_initializer())
    ckpt = tf.train.get_checkpoint_state(FLAGS.logs_dir)
    if ckpt and ckpt.model_checkpoint_path:
        saver.restore(sess, ckpt.model_checkpoint_path)
        print("Model restored...")
    # 如果是train模式
    # 迭代MAX_ITERATION次
    #     读取下一批次图像与标注进行训练
    #     每10轮输出一下train_loss,500轮输出一下验证集的loss
    if FLAGS.mode == "train":
        for itr in xrange(MAX_ITERATION):
            train_images, train_annotations = train_dataset_reader.next_batch(FLAGS.batch_size)
            feed_dict = {image: train_images, annotation: train_annotations, keep_probability: 0.85}

            sess.run(train_op, feed_dict=feed_dict)

            if itr % 10 == 0:
                train_loss, summary_str = sess.run([loss, loss_summary], feed_dict=feed_dict)
                print("Step: %d, Train_loss:%g" % (itr, train_loss))
                train_writer.add_summary(summary_str, itr)

            if itr % 500 == 0:
                valid_images, valid_annotations = validation_dataset_reader.next_batch(FLAGS.batch_size)
                valid_loss, summary_sva = sess.run([loss, loss_summary], feed_dict={image: valid_images, annotation: valid_annotations,
                                                       keep_probability: 1.0})
                print("%s ---> Validation_loss: %g" % (datetime.datetime.now(), valid_loss))

                # add validation loss to TensorBoard
                validation_writer.add_summary(summary_sva, itr)
                saver.save(sess, FLAGS.logs_dir + "model.ckpt", itr)

    elif FLAGS.mode == "visualize":
        valid_images, valid_annotations = validation_dataset_reader.get_random_batch(FLAGS.batch_size)
        pred = sess.run(pred_annotation, feed_dict={image: valid_images, annotation: valid_annotations,
                                                    keep_probability: 1.0})
        valid_annotations = np.squeeze(valid_annotations, axis=3)
        pred = np.squeeze(pred, axis=3)

        for itr in range(FLAGS.batch_size):
            utils.save_image(valid_images[itr].astype(np.uint8), FLAGS.logs_dir, name="inp_" + str(5+itr))
            utils.save_image(valid_annotations[itr].astype(np.uint8), FLAGS.logs_dir, name="gt_" + str(5+itr))
            utils.save_image(pred[itr].astype(np.uint8), FLAGS.logs_dir, name="pred_" + str(5+itr))
            print("Saved image: %d" % itr)

if __name__ == "__main__":
    tf.app.run()

TensorflowUtils.py

很多功能在这个Python里实现,所以贴出来

__author__ = 'Charlie'
# Utils used with tensorflow implemetation
import tensorflow as tf
import numpy as np
import scipy.misc as misc
import os, sys
from six.moves import urllib
import tarfile
import zipfile
import scipy.io


def get_model_data(dir_path, model_url):
    maybe_download_and_extract(dir_path, model_url)
    filename = model_url.split("/")[-1]
    filepath = os.path.join(dir_path, filename)
    if not os.path.exists(filepath):
        raise IOError("VGG Model not found!")
    data = scipy.io.loadmat(filepath)
    return data


def maybe_download_and_extract(dir_path, url_name, is_tarfile=False, is_zipfile=False):
    if not os.path.exists(dir_path):
        os.makedirs(dir_path)
    filename = url_name.split('/')[-1]
    filepath = os.path.join(dir_path, filename)
    if not os.path.exists(filepath):
        def _progress(count, block_size, total_size):
            sys.stdout.write(
                '\r>> Downloading %s %.1f%%' % (filename, float(count * block_size) / float(total_size) * 100.0))
            sys.stdout.flush()

        filepath, _ = urllib.request.urlretrieve(url_name, filepath, reporthook=_progress)
        print()
        statinfo = os.stat(filepath)
        print('Succesfully downloaded', filename, statinfo.st_size, 'bytes.')
        if is_tarfile:
            tarfile.open(filepath, 'r:gz').extractall(dir_path)
        elif is_zipfile:
            with zipfile.ZipFile(filepath) as zf:
                zip_dir = zf.namelist()[0]
                zf.extractall(dir_path)


def save_image(image, save_dir, name, mean=None):
    """
    Save image by unprocessing if mean given else just save
    :param mean:
    :param image:
    :param save_dir:
    :param name:
    :return:
    """
    if mean:
        image = unprocess_image(image, mean)
    misc.imsave(os.path.join(save_dir, name + ".png"), image)


def get_variable(weights, name):
    init = tf.constant_initializer(weights, dtype=tf.float32)
    var = tf.get_variable(name=name, initializer=init,  shape=weights.shape)
    return var


def weight_variable(shape, stddev=0.02, name=None):
    # print(shape)
    initial = tf.truncated_normal(shape, stddev=stddev)
    if name is None:
        return tf.Variable(initial)
    else:
        return tf.get_variable(name, initializer=initial)


def bias_variable(shape, name=None):
    initial = tf.constant(0.0, shape=shape)
    if name is None:
        return tf.Variable(initial)
    else:
        return tf.get_variable(name, initializer=initial)


def get_tensor_size(tensor):
    from operator import mul
    return reduce(mul, (d.value for d in tensor.get_shape()), 1)


def conv2d_basic(x, W, bias):
    conv = tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding="SAME")
    return tf.nn.bias_add(conv, bias)


def conv2d_strided(x, W, b):
    # tf.nn.conv2d(input, filter, strides, padding, use_cudnn_on_gpu=None, name=None
    # 介绍参数:
    # input:指卷积需要输入的参数,具有这样的shape[batch, in_height, in_width, in_channels],分别是[batch张图片, 每张图片高度为in_height, 每张图片宽度为in_width, 图像通道为in_channels]。
    # filter:指用来做卷积的滤波器,当然滤波器也需要有相应参数,滤波器的shape为[filter_height, filter_width, in_channels, out_channels],分别对应[滤波器高度, 滤波器宽度, 接受图像的通道数, 卷积后通道数],其中第三个参数 in_channels需要与input中的第四个参数 in_channels一致,out_channels第一看的话有些不好理解,如rgb输入三通道图,我们的滤波器的out_channels设为1的话,就是三通道对应值相加,最后输出一个卷积核。
    # strides:代表步长,其值可以直接默认一个数,也可以是一个四维数如[1,2,1,1],则其意思是水平方向卷积步长为第二个参数2,垂直方向步长为1.其中第一和第四个参数我还不是很明白,请大佬指点,貌似和通道有关系。
    # padding:代表填充方式,参数只有两种,SAME和VALID,SAME比VALID的填充方式多了一列,比如一个3*3图像用2*2的滤波器进行卷积,当步长设为2的时候,会缺少一列,则进行第二次卷积的时候,VALID发现余下的窗口不足2*2会直接把第三列去掉,SAME则会填充一列,填充值为0。
    # use_cudnn_on_gpu:bool类型,是否使用cudnn加速,默认为true。大概意思是是否使用gpu加速,还没搞太懂。
    # name:给返回的tensor命名。给输出feature map起名字。
    conv = tf.nn.conv2d(x, W, strides=[1, 2, 2, 1], padding="SAME")
    return tf.nn.bias_add(conv, b)


def conv2d_transpose_strided(x, W, b, output_shape=None, stride = 2):
    # print x.get_shape()
    # print W.get_shape()
    if output_shape is None:
        output_shape = x.get_shape().as_list()
        output_shape[1] *= 2
        output_shape[2] *= 2
        output_shape[3] = W.get_shape().as_list()[2]
    # print output_shape
    conv = tf.nn.conv2d_transpose(x, W, output_shape, strides=[1, stride, stride, 1], padding="SAME")
    return tf.nn.bias_add(conv, b)


def leaky_relu(x, alpha=0.0, name=""):
    return tf.maximum(alpha * x, x, name)


def max_pool_2x2(x):
    # tf.nn.max_pool(value, ksize, strides, padding, name=None)
    # 参数是四个,和卷积很类似:
    # 第一个参数value:需要池化的输入,一般池化层接在卷积层后面,所以输入通常是feature map,依然是[batch, height, width, channels]这样的shape
    # 第二个参数ksize:池化窗口的大小,取一个四维向量,一般是[1, height, width, 1],因为我们不想在batch和channels上做池化,所以这两个维度设为了1
    # 第三个参数strides:和卷积类似,窗口在每一个维度上滑动的步长,一般也是[1, stride, stride, 1]
    # 第四个参数padding:和卷积类似,可以取'VALID'或者'SAME',SAME比VALID的填充方式多了一列,比如一个3*3图像用2*2的滤波器进行卷积,当步长设为2的时候,会缺少一列,则进行第二次卷积的时候,VALID发现余下的窗口不足2*2会直接把第三列去掉,SAME则会填充一列,填充值为0。
    # 返回一个Tensor,类型不变,shape仍然是[batch, height, width, channels]这种形式
    return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding="SAME")


def avg_pool_2x2(x):
    # avg_pool同理max_pool的参数
    return tf.nn.avg_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding="SAME")


def local_response_norm(x):
    return tf.nn.lrn(x, depth_radius=5, bias=2, alpha=1e-4, beta=0.75)


def batch_norm(x, n_out, phase_train, scope='bn', decay=0.9, eps=1e-5):
    """
    Code taken from http://stackoverflow.com/a/34634291/2267819
    """
    with tf.variable_scope(scope):
        beta = tf.get_variable(name='beta', shape=[n_out], initializer=tf.constant_initializer(0.0)
                               , trainable=True)
        gamma = tf.get_variable(name='gamma', shape=[n_out], initializer=tf.random_normal_initializer(1.0, 0.02),
                                trainable=True)
        batch_mean, batch_var = tf.nn.moments(x, [0, 1, 2], name='moments')
        ema = tf.train.ExponentialMovingAverage(decay=decay)

        def mean_var_with_update():
            ema_apply_op = ema.apply([batch_mean, batch_var])
            with tf.control_dependencies([ema_apply_op]):
                return tf.identity(batch_mean), tf.identity(batch_var)

        mean, var = tf.cond(phase_train,
                            mean_var_with_update,
                            lambda: (ema.average(batch_mean), ema.average(batch_var)))
        normed = tf.nn.batch_normalization(x, mean, var, beta, gamma, eps)
    return normed


def process_image(image, mean_pixel):
    return image - mean_pixel


def unprocess_image(image, mean_pixel):
    return image + mean_pixel


def bottleneck_unit(x, out_chan1, out_chan2, down_stride=False, up_stride=False, name=None):
    """
    Modified implementation from github ry?!
    """

    def conv_transpose(tensor, out_channel, shape, strides, name=None):
        out_shape = tensor.get_shape().as_list()
        in_channel = out_shape[-1]
        kernel = weight_variable([shape, shape, out_channel, in_channel], name=name)
        shape[-1] = out_channel
        return tf.nn.conv2d_transpose(x, kernel, output_shape=out_shape, strides=[1, strides, strides, 1],
                                      padding='SAME', name='conv_transpose')

    def conv(tensor, out_chans, shape, strides, name=None):
        in_channel = tensor.get_shape().as_list()[-1]
        kernel = weight_variable([shape, shape, in_channel, out_chans], name=name)
        return tf.nn.conv2d(x, kernel, strides=[1, strides, strides, 1], padding='SAME', name='conv')

    def bn(tensor, name=None):
        """
        :param tensor: 4D tensor input
        :param name: name of the operation
        :return: local response normalized tensor - not using batch normalization :(
        """
        return tf.nn.lrn(tensor, depth_radius=5, bias=2, alpha=1e-4, beta=0.75, name=name)

    in_chans = x.get_shape().as_list()[3]

    if down_stride or up_stride:
        first_stride = 2
    else:
        first_stride = 1

    with tf.variable_scope('res%s' % name):
        if in_chans == out_chan2:
            b1 = x
        else:
            with tf.variable_scope('branch1'):
                if up_stride:
                    b1 = conv_transpose(x, out_chans=out_chan2, shape=1, strides=first_stride,
                                        name='res%s_branch1' % name)
                else:
                    b1 = conv(x, out_chans=out_chan2, shape=1, strides=first_stride, name='res%s_branch1' % name)
                b1 = bn(b1, 'bn%s_branch1' % name, 'scale%s_branch1' % name)

        with tf.variable_scope('branch2a'):
            if up_stride:
                b2 = conv_transpose(x, out_chans=out_chan1, shape=1, strides=first_stride, name='res%s_branch2a' % name)
            else:
                b2 = conv(x, out_chans=out_chan1, shape=1, strides=first_stride, name='res%s_branch2a' % name)
            b2 = bn(b2, 'bn%s_branch2a' % name, 'scale%s_branch2a' % name)
            b2 = tf.nn.relu(b2, name='relu')

        with tf.variable_scope('branch2b'):
            b2 = conv(b2, out_chans=out_chan1, shape=3, strides=1, name='res%s_branch2b' % name)
            b2 = bn(b2, 'bn%s_branch2b' % name, 'scale%s_branch2b' % name)
            b2 = tf.nn.relu(b2, name='relu')

        with tf.variable_scope('branch2c'):
            b2 = conv(b2, out_chans=out_chan2, shape=1, strides=1, name='res%s_branch2c' % name)
            b2 = bn(b2, 'bn%s_branch2c' % name, 'scale%s_branch2c' % name)

        x = b1 + b2
        return tf.nn.relu(x, name='relu')


def add_to_regularization_and_summary(var):
    if var is not None:
        tf.summary.histogram(var.op.name, var)
        tf.add_to_collection("reg_loss", tf.nn.l2_loss(var))


def add_activation_summary(var):
    if var is not None:
        tf.summary.histogram(var.op.name + "/activation", var)
        tf.summary.scalar(var.op.name + "/sparsity", tf.nn.zero_fraction(var))


def add_gradient_summary(grad, var):
    if grad is not None:
        tf.summary.histogram(var.op.name + "/gradient", grad)

运行的结果

    setting up vgg initialized conv layers ...
    Setting up summary op...
    Setting up image reader...
    Found pickle file!
    Train Set Size: 20210
    Valid Set Size: 2000
    Setting up dataset reader
    Initializing Batch Dataset Reader...
    {'resize': True, 'resize_size': 224}
    (20210, 224, 224, 3)
    (20210, 224, 224, 1)
    Initializing Batch Dataset Reader...
    {'resize': True, 'resize_size': 224}
    (2000, 224, 224, 3)
    (2000, 224, 224, 1)
    Setting up Saver...
    INFO:tensorflow:Restoring parameters from logs/model.ckpt-47500
    Model restored...
    Step: 0, Train_loss:2.07889
    2018-08-12 21:02:26.980401 ---> Validation_loss: 1.65172
    Step: 10, Train_loss:1.6146
    Step: 20, Train_loss:1.09385
    Step: 30, Train_loss:0.841486
    Step: 40, Train_loss:1.16472
    Step: 50, Train_loss:0.857076
    Step: 60, Train_loss:2.01374
    Step: 70, Train_loss:1.29242
    Step: 80, Train_loss:1.55015
    Step: 90, Train_loss:1.49861
    Step: 100, Train_loss:1.05323
    Step: 110, Train_loss:2.56539
    Step: 120, Train_loss:2.41875
    Step: 130, Train_loss:1.68616
    Step: 140, Train_loss:2.45747
    Step: 150, Train_loss:1.23132
    Step: 160, Train_loss:0.801146
    Step: 170, Train_loss:1.50493
    Step: 180, Train_loss:2.83727
    Step: 190, Train_loss:1.34507
    Step: 200, Train_loss:1.6949
    Step: 210, Train_loss:1.19958
    Step: 220, Train_loss:0.948488
    Step: 230, Train_loss:0.861522
    Step: 240, Train_loss:1.30292
    Step: 250, Train_loss:1.049
    Step: 260, Train_loss:2.16112
    Step: 270, Train_loss:1.69653
    Step: 280, Train_loss:1.14899
    Step: 290, Train_loss:2.219
    Step: 300, Train_loss:0.828941
    Step: 310, Train_loss:1.12873
    Step: 320, Train_loss:1.76599
    Step: 330, Train_loss:1.71529
    Step: 340, Train_loss:1.4581
    Step: 350, Train_loss:0.65748
    Step: 360, Train_loss:1.42326
    Step: 370, Train_loss:1.18391
    Step: 380, Train_loss:0.826132
    Step: 390, Train_loss:1.76418
    Step: 400, Train_loss:1.03422
    Step: 410, Train_loss:1.62564
    Step: 420, Train_loss:2.05213
    Step: 430, Train_loss:0.988207
    Step: 440, Train_loss:1.21138
    Step: 450, Train_loss:1.74969
    Step: 460, Train_loss:1.18206
    Step: 470, Train_loss:2.2452
    Step: 480, Train_loss:1.9146
    Step: 490, Train_loss:1.55511
    Step: 500, Train_loss:0.648539
    2018-08-12 21:04:42.452861 ---> Validation_loss: 1.28776
    Step: 510, Train_loss:1.54278
    Step: 520, Train_loss:2.89428
    Step: 530, Train_loss:0.672546
    Step: 540, Train_loss:3.83635
    Step: 550, Train_loss:0.471446
    Step: 560, Train_loss:1.15738
    Step: 570, Train_loss:1.40668
    Step: 580, Train_loss:1.15955
    Step: 590, Train_loss:1.75457
    Step: 600, Train_loss:1.45749
    Step: 610, Train_loss:1.19461
    Step: 620, Train_loss:0.903743
    Step: 630, Train_loss:0.80773
    Step: 640, Train_loss:1.29595
    Step: 650, Train_loss:1.25178
    Step: 660, Train_loss:1.51566
    Step: 670, Train_loss:0.998369
    Step: 680, Train_loss:1.39247
    Step: 690, Train_loss:2.10086
    Step: 700, Train_loss:1.62453

你可能感兴趣的:(Deep,Learning)