如dataframe
data1['月份']=int(month) #加入月份和企业名称
data1['企业']=parmentname
可以增加单列,并赋值,如果想同时对多列进行赋值
data1['月份','企业']=int(month) , parmentname #加入月份和企业名称
会出错
ValueError: Length of values does not match length of index
data[['合计','平均']]='数据','月份'
类似这样的,也无效
KeyError: “None of [Index([‘合计’, ‘平均’], dtype=‘object’)] are in the [columns]”
只有下例中:
import pandas as pd
chengji=[[100,95,100,99],[90,98,99,100],[88,95,98,88],[99,98,97,87],[96.5,90,96,85],[94,94,93,91],[91, 99, 92, 87], [85, 88, 85, 90], [90, 92, 99, 88], [90, 88, 89, 81], [85, 89, 89, 82], [95, 87, 86, 88], [90, 97, 97, 98], [80, 92, 89, 98], [80, 98, 85, 81], [98, 88, 95, 92]]
data=pd.DataFrame(chengji,columns=['语文','英语','数学','政治'])
print (data)
# data1=data[['数学','语文','英语','政治']] #排序
# data1=data1.reset_index(drop=True) #序列重建
# data1.index.names=['序号'] #序列重命名
# data1.index=data1.index+1 #序列从1开始
# print (data1)
data=pd.DataFrame(chengji,columns=['语文','英语','数学','政治'],index=[i for i in range(1,len(chengji)+1)])
print (data)
data[['合计','平均']]=data.apply(lambda x: (x.sum(), x.sum()/4),axis=1,result_type='expand')
print (data[:])
data=pd.DataFrame(chengji,columns=['语文','英语','数学','政治'],index=[i for i in range(1,len(chengji)+1)])
print (data)
data[['合计','平均']]=data.apply(lambda x:('数据','月份'),axis=1,result_type='expand')
print (data[:])
应用apply 并设置result_type=‘expand’ 参数才可以。
先前的例子,用如下的方法就行了
data1[['月份','企业']]=data1.apply(lambda x:(int(month),parmentname),axis=1,result_type='expand')
# data1['月份']=int(month) #加入月份和企业名称
# data1['企业']=parmentname
#print (data1)
后记:
如果’月份’,'企业’列存在,用如下也可,上例中,直接可以创建不存在的列。
data1.lco[:,['月份','企业']]=int(month),parmentname
或
data1[['月份','企业']]=int(month),parmentname
今天又遇到一个从某列截取字符串长度写到另一列的,也一并写到这里:
货品列在原表中无,取货品代码的前12位。
totaldata = totaldata.reset_index(drop=False)
totaldata['货品'] = totaldata['货品代码'].apply(lambda x:x[:12])
后记:2020.5.17又遇到想新增两列并赋值的问题
import numpy as np
import pandas as pd
from pandas import Series
chengji = [['N', 95, 0], ['N', 100, 88], ['N', 88, 100], ['N', 66, 0]]
data = pd.DataFrame(chengji, columns=['p', 'x', 'g'])
data[['序号','列名']]=data[['p','x']] #pd.DataFrame(data[['p','x']])# .apply(lambda x : x )
print(data)