A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below).
The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked 'Finish' in the diagram below).
How many possible unique paths are there?
深度搜索备忘录法:
class Solution {
public:
vector > f;
int uniquePaths(int m, int n) {
if(m <= 0 || n <= 0)
return -1;
f = vector > (m, vector(n,-1));
return dfs(m-1,n-1);
}
int dfs(int m, int n)
{
if(m == 0 || n == 0)
return 1;
return getOrupdate(m-1, n ) + getOrupdate(m, n-1);
}
int getOrupdate(int m, int n)
{
if(m < 0 || n < 0)
return 0;
if(f[m][n] > 0 )
return f[m][n];
else
return f[m][n] = dfs(m,n);
}
};
class Solution {
public:
//动态规划,
int uniquePaths(int m, int n) {
if(m <= 0 || n <= 0)
return -1;
vector > f(m, vector(n,0));
for(int i = 0; i < m ; ++i)//边界,第一行第一列就是一步就到
f[i][0] = 1;
for(int i = 0; i < n ; ++i)
f[0][i] = 1;
for(int i = 1; i < m ; ++i)
for(int j = 1; j < n; ++ j)
f[i][j] = f[i-1][j] + f[i][j-1];
return f[m-1][n-1];
}
};
class Solution {
public:
//动态规划,滚动数组
int uniquePaths(int m, int n) {
if(m <= 0 || n <= 0)
return -1;
vector f(n,0);
f[0] = 1;
for(int i = 0; i < m ; ++i)
for(int j = 1; j < n; ++ j)
f[j] = f[j] + f[j-1];//左边的f[j]是需要求解的值f[i][j],右边的f[j]是f[i-1][j],f[j-1]是f[i][j-1],,
return f[n-1]; }};
Follow up for "Unique Paths":
Now consider if some obstacles are added to the grids. How many unique paths would there be?
An obstacle and empty space is marked as 1
and 0
respectively in the grid.
For example,
There is one obstacle in the middle of a 3x3 grid as illustrated below.
[ [0,0,0], [0,1,0], [0,0,0] ]
class Solution {
public:
vector > f;
int uniquePathsWithObstacles(vector > &obstacleGrid) {
int m = obstacleGrid.size();
int n = obstacleGrid[0].size();
if(m <= 0 || n <= 0)
return -1;
f = vector > (m, vector(n,-1));
return dfs(obstacleGrid, m-1,n-1);
}
int dfs(vector > &obstacleGrid,int m, int n)
{
if(obstacleGrid[m][n])
return 0;
if(m == 0 && n == 0)
return 1;
return getOrupdate(obstacleGrid,m-1, n ) + getOrupdate(obstacleGrid, m, n-1);
}
int getOrupdate(vector > &obstacleGrid, int m, int n)
{
if(m < 0 || n < 0)
return 0;
if(f[m][n] > 0 )
return f[m][n];
else
return f[m][n] = dfs(obstacleGrid,m,n);
}
};
class Solution {
public:
int uniquePathsWithObstacles(vector > &obstacleGrid) {
int m = obstacleGrid.size();
int n = obstacleGrid[0].size();
if(m <= 0 || n <= 0)
return -1;
if(obstacleGrid[0][0] || obstacleGrid[m-1][n-1])
return 0;
vector f(n, 0);
f[0] = 1;
for(int i = 0; i < m; ++ i)
for(int j = 0; j < n; ++ j)//知道为什么j从0开始了,因为除了f[0][0]判断了不是障碍,后面的第一列可能存在障碍
{
if(obstacleGrid[i][j])
f[j] = 0;
else if ( j == 0)//障碍物可能在第一列,这样子需要注意f[0]的更新,
//不对是因为第一列只有一个方向可以到达,如果,他前面那步已经是0,当前位置不可能f[j] = 1,滚动数组保持之前的值f[j] = f[j]
f[j] = f[j];
else if(j > 0)
f[j] = f[j-1] + f[j];
}
return f[n-1];
}
};
Minimum Path Sum
Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which minimizes the sum of all numbers along its path.
Note: You can only move either down or right at any point in time.
深度搜索,备忘录法
class Solution {
public:
vector > f;
//备忘录法,把每次计算的值保存下来
int getOrupdate(vector > &grid, int m, int n)
{
if(m < 0 || n < 0)
return INT_MAX;
if(f[m][n] > 0)
return f[m][n];
else
return f[m][n] = dfs(grid, m, n);
}
int dfs(vector > &grid, int m, int n)
{
if(m == 0 && n == 0 )
return grid[0][0];
return min(getOrupdate(grid,m-1,n), getOrupdate(grid,m,n-1)) + grid[m][n];
}
int minPathSum(vector > &grid) {
if(grid.size() == 0)
return -1;
int m = grid.size();
int n = grid[0].size();
f=vector > (m, vector (n,-1));//注意初始化的形式,f(m, vector (n,-1))不对,只能在声明的时候这样子
return dfs(grid, m-1, n-1);//实际应该小1
}
};
空间复杂度O(MN),状态函数:f[i][j] = min(f[i][j-1], f[i-1][j]) + grid[i][j];
class Solution {
public:
int minPathSum(vector > &grid) {
if(grid.size() == 0)
return -1;
int m = grid.size();
int n = grid[0].size();
vector > f(m, vector(n,0));
f[0][0] = grid[0][0];
for(int i = 1; i < m; ++ i)
{
f[i][0] = f[i-1][0] + grid[i][0];//第一列的元素递增
}
for(int i = 1; i < n; ++ i)
{
f[0][i] = f[0][i-1] + grid[0][i];//第一行的元素递增
}
for(int i = 1 ; i < m ; ++ i)
for(int j = 1; j < n; ++ j)
{
f[i][j] = min(f[i][j-1], f[i-1][j]) + grid[i][j];
}
return f[m-1][n-1];
}
};
class Solution {
public:
int minPathSum(vector > &grid) {
if(grid.size() == 0)
return -1;
int m = grid.size();
int n = grid[0].size();
vector f(n,INT_MAX);
f[0] = 0;
for(int i = 0 ; i < m ; ++ i)
{
f[0] += grid[i][0];//用的是第一列的累加,作为滚动数组的起始值
for(int j = 1; j < n; ++ j)//总体看是二维,可以简化成一维,对数组中剩下的值,不断更新的结果
{
//左边的f[j]是需要求解的值f[i][j],右边的f[j]是f[i-1][j],f[j-1]是f[i][j-1],所以初始化需要是最大值,
f[j] = min(f[j-1], f[j]) + grid[i][j];
}
}
return f[n-1];
}
};