- CIANNA由天体物理学家提供/为天体物理学家提供的卷积交互式人工神经网络
struggle2025
神经网络
一、软件介绍文末提供程序和源码下载CIANNA是一个通用的深度学习框架,主要用于天文数据分析。根据天体物理问题解决的相关性添加功能和优化。CIANNA可用于为各种任务构建和训练大型神经网络模型,并提供高级Python接口(类似于keras、pytorch等)。CIANNA的特点之一是它定制实施了受YOLO启发的对象探测器,用于2D或3D射电天文数据产品中的星系探测。该框架通过低级CUDA编程完全实
- CUDA编程:优化GPU并行处理与内存管理
Omoo
CUDAGPU并行处理线程协作内存管理硬件限制
背景简介CUDA是NVIDIA推出的一种通用并行计算架构,它利用GPU的强大计算能力来解决复杂的计算问题。在本书的第12章中,我们深入探讨了CUDA编程的关键概念,包括线程间的协作、内存分配与管理以及如何应对硬件限制。CUDA中的线程协作与内存管理在GPU上进行编程时,我们需要处理内存分配、数据传输以及内核(kernel)的调用等任务。CUDA提供了一系列的API来帮助开发者管理这些资源。在提供的
- 【CUDA编程】Dim3
量化投资和人工智能
CUDA昇腾CUDA人工智能深度学习c++云计算
dim3是CUDA编程中用于定义线程块(Block)和网格(Grid)维度的三维向量结构体,本质是包含三个无符号整数成员(x、y、z)的轻量级容器。以下是其核心特性与用法详解:一、核心定义与结构structdim3{unsignedintx;//第一维度(宽度)unsignedinty;//第二维度(高度)unsignedintz;//第三维度(深度)};默认值规则:未显式赋值的维度默认为1。示例
- 【CUDA编程】OptionalCUDAGuard详解
量化投资和人工智能
CUDA大模型人工智能机器学习CUDA云计算pythonc++
OptionalCUDAGuard是PyTorch的CUDA工具库(c10/cuda)中用于安全管理GPU设备上下文的RAII(ResourceAcquisitionIsInitialization)类。其核心作用是在特定代码块中临时切换GPU设备,并在退出作用域时自动恢复原设备状态,尤其适用于设备可能为“未指定”(nullopt)的场景。以下从作用、原理、用法和典型场景详细解析:⚙️一、核心作用
- 【CUDA编程】 C10_CUDA_CHECK 宏详细解析
量化投资和人工智能
CUDACUDA人工智能云计算大模型
以下是对C10_CUDA_CHECK宏的详细解析,结合CUDA错误处理机制和PyTorch框架设计进行说明:一、宏定义结构解析#defineC10_CUDA_CHECK(EXPR)\do{\constcudaError_t__err=EXPR;\c10::cuda::c10_cuda_check_implementation(\static_cast(__err),\__FILE__,\__fun
- 第四篇:Python 高级-高性能计算加速秘籍
程序员勇哥
Python全套教程python开发语言
第四篇:Python高级-高性能计算加速秘籍在当今数据量与计算需求日益增长的环境下,提升Python程序的计算性能显得尤为关键。本篇将深入探讨向量化计算的深度优化以及如何借助CUDA编程与GPU加速来显著提升Python计算效率。一、向量化计算的深度优化(一)利用Numba实现复杂算法的高效向量化Numba简介Numba是一个用于Python的即时编译器(JIT),它能够将Python函数转换为机
- Python中使用CUDA/GPU的方式比较
东北豆子哥
CUDAHPC/MPIpythonCUDA
Python中使用CUDA/GPU的方式比较在Python中利用GPU加速计算有多种方式,以下是主要的几种方法及其比较:1.CUDA原生开发方式:使用NVIDIA提供的CUDAC/C++API开发内核通过PyCUDA或Numba等工具在Python中调用特点:最底层,性能最优开发复杂度高需要熟悉CUDA编程模型示例库:PyCUDANumbaCUDA2.通用GPU计算框架2.1CUDA加速库方式:使
- flash attention的CUDA编程流水并行加速-V6
谨慎付费(看不懂试读博客不要订阅)
高性能计算redis数据库缓存
之前关于flashattention的介绍可以继续参考链接添加链接描述矩阵乘法的优化参考添加链接描述,我们发现矩阵乘法的最优配置为:BLOCK_DIM_x=BLOCK_DIM_y=16,同时每个线程处理一个8×8的子矩阵。线程网格设置如下所示:constintRq=8;constintRv
- 被 CUDA 性能问题困扰?从全局内存到共享内存,并行归约优化全解析!
讳疾忌医丶
动手学习CUDA编程c++CUDA开发语言
你是不是也觉得GPU编程听起来很酷,但一上手就头大?别慌,今天我带你玩转CUDA里一个既基础又硬核的东西——并行归约。啥是归约?简单说,就是把一堆数加起来(或者其他累积操作),但在GPU上,这可不是简单的for循环,而是能让性能起飞的优化手法。作为一个写了好几年CUDA的老司机,我有个独家观点:并行归约是CUDA编程的灵魂,搞懂它,你就摸到了GPU优化的门道。这篇文章不整虚的,我会用大白话带你从最
- 《GPU高性能编程CUDA实战》中文版电子书
翁佳忱
《GPU高性能编程CUDA实战》中文版电子书【下载地址】GPU高性能编程CUDA实战中文版电子书探索GPU高性能编程的奥秘,掌握CUDA实战技巧!本资源提供了《GPU高性能编程CUDA实战》中文电子书,深入解析GPU编程基础与CUDA架构,助您从理论到实践全面提升。无论您是编程新手还是资深开发者,本书都能为您提供清晰的指导与丰富的实战案例。立即下载,开启您的CUDA编程之旅,解锁GPU计算的无限潜
- Cuda Instruction Replay
ZhiqianXia
CUDA技术笔记cuda
在CUDA编程中,指令重放(InstructionReplay)是GPU执行指令时因特定原因导致指令需重复发射或重新执行的现象,通常会影响性能。以下是其关键点:指令重放的原因分支分歧(DivergentBranches)当同一线程束(Warp)中的线程执行不同分支(如if-else)时,GPU需串行化处理每个分支路径。同一指令可能被多次发射(重放),导致执行时间增加。内存访问延迟全局内存访问未命中
- CUDA编程高阶优化:如何突破GPU内存带宽瓶颈的6种实战策略
学术猿之吻
GPU高校人工智能边缘计算人工智能transformer深度学习gpu算力aiAI编程
在GPU计算领域,内存带宽瓶颈是制约性能提升的"隐形杀手"。本文面向具备CUDA基础的研究者,从寄存器、共享内存到TensorCore,系统剖析6项突破性优化策略,助你充分释放GPU算力。一、全局内存访问优化:对齐与合并原则1.1合并访问的本质GPU全局内存以线程束(Warp)为单位执行合并事务。当32个线程访问连续且对齐的128字节内存块时,总线利用率可达100%。以下代码演示如何实现合并
- CUDA编程优化:如何实现矩阵计算的100倍加速
学术猿之吻
GPU高校人工智能矩阵人工智能线性代数深度学习量子计算算法gpu算力
一、突破性能瓶颈的核心路径矩阵计算的百倍加速需要打通"内存带宽→计算密度→指令吞吐"三重关卡。根据NVIDIAAmpere架构白皮书,A100GPU的理论计算峰值(FP32)为19.5TFLOPS,但原生CUDA代码往往只能达到5-8%的理论值。通过系统化优化策略,我们成功将1024×1024矩阵乘法从初始的212ms优化至2.1ms,实现101倍加速(测试平台:NVIDIARTX3090)。二、
- C++开发者的逆袭之路:大部份的高薪岗位都在招 CUDA 人才,你还不行动?
讳疾忌医丶
动手学习CUDA编程c++开发语言
为什么你必须学会CUDA编程?想象一下,你手头有个计算任务,普通CPU跑得慢得像乌龟爬,而GPU却能像火箭一样把性能拉满——这就是高性能计算(HPC)的魅力!在这个数据爆炸的时代,无论是AI训练、科学仿真还是金融建模,HPC都成了不可或缺的利器。而NVIDIA的CUDA平台,正是这场革命的核心,把GPU从画图的“小能手”变成了并行计算的“大杀器”。作为一名C++专家,我可以负责任地说:学会CUDA
- CUDA 编程相关的开源库
byxdaz
CUDAcuda
CUDA编程相关的开源库非常丰富,涵盖了高性能计算、深度学习、图像处理、线性代数、优化算法等多个领域。1.通用GPU计算库CUDAToolkit(NVIDIA官方):包含CUDA运行时库、编译器(nvcc)、调试工具(cuda-gdb、Nsight)、数学库(如cuBLAS、cuFFT)等。CUDAToolkit-FreeToolsandTraining|NVIDIADeveloperThrust
- GPU编程实战指南04:CUDA编程示例,使用共享内存优化性能
anda0109
CUDA并行编程gpu算力AI编程ai
在CUDA编程中,共享内存(SharedMemory)比全局内存(GlobalMemory)效率高的原因主要与CUDA的硬件架构和内存访问特性密切相关。以下是详细分析:1.CUDA内存层次结构CUDA设备(GPU)具有多层次的内存架构,主要包括以下几种:寄存器(Registers):每个线程私有的高速存储单元,速度最快但容量有限。共享内存(SharedMemory):由同一个线程块(Block)中
- gather算子的CUDA编程和算子测试
谨慎付费(看不懂试读博客不要订阅)
高性能计算CUDA
知乎介绍参考添加链接描述完整测试框架参考本人仓库添加链接描述gather算子的onnx定义参考添加链接描述,该算子的主要变换参考下图:这里我们不妨以input=[A,dimsize,D],indices=[B,C],axis=1举例子,此时对应的output形状是[A,B,C,D],并且根据gather算子定义,我们知道output[i,j,k,s]=input[i,indices[j,k],s]
- Python调用CUDA
源代码分析
python开发语言
CUDA常用语法和函数CUDA(ComputeUnifiedDeviceArchitecture)是NVIDIA提供的一个并行计算平台和编程模型,允许开发者使用NVIDIAGPU进行高性能计算。以下是一些CUDA编程中的常用语法和函数:核函数(KernelFunctions):使用__global__修饰符定义,这种函数可以从主机(CPU)调用并在设备(GPU)上并行执行。调用格式:kernel>
- NVIDIA GTC 开发者社区Watch Party资料汇总
扫地的小何尚
NVIDIAGPUlinuxAI算法
NVIDIAGTC开发者社区WatchParty资料汇总以下是所有涉及到的工具中文解读汇总,希望可以帮到各位:1.CUDA编程模型开发者指南和最新功能解析专栏2.NVIDIAWarp:高性能GPU模拟与图形计算的Python框架3.NVIDIAcuDF:GPU加速的数据处理库详解4.NVIDIAcuML:GPU加速的机器学习库详解5.NVIDIAcuFFT详解:从入门到高级应用6.NVIDIAcu
- GPU计算的历史与CUDA编程入门
己见明
GPU计算CUDAC数据并行性CUDA程序结构向量加法内核
GPU计算的历史与CUDA编程入门背景简介GPU计算的历史可以追溯到早期的并行计算研究,如今已发展成为计算机科学中的一个重要分支。本文将探讨GPU计算的发展史,重点分析《ComputerGraphics:PrinciplesandPractice》等关键文献,以及CUDAC编程模型的引入及其对现代软件开发的影响。历史回顾回顾历史,GPU计算的发展始于1986年Hillis与Steele在《Comm
- CUDA编程基础
清 澜
算法面试人工智能c++算法nvidiacuda编程
一、快速理解CUDA编程1.1CUDA简介CUDA(ComputeUnifiedDeviceArchitecture)是由NVIDIA推出的并行计算平台和应用程序接口模型。它允许开发者利用NVIDIAGPU的强大计算能力来加速通用计算任务,而不仅仅是图形渲染。通过CUDA,开发者可以编写C、C++或Fortran代码,并将其扩展以在GPU上运行,从而显著提高性能,特别是在处理大规模数据集和复杂算法
- c++高性能多进程 cuda编程: safe_softmax实现 + cub::BlockReduce自定义归约操作
FakeOccupational
深度学习c++开发语言
目录cub::BlockReduce自定义归约操作(`cub::BlockReduce::Reduce`)1.语法safe_softmax实现cub::BlockReducecub::BlockReduce是CUB库(CUDAUnBound)提供的一种用于GPU线程块内数据归约(一般完成所有数据规约需要两次规约)的高效工具。它允许线程块内的多个线程并行地对数据执行归约操作,cub::BlockRe
- 英伟达的ptx是什么?ptx在接近汇编语言的层级运行?
AI-AIGC-7744423
人工智能
PTX(ParallelThreadeXecution)是英伟达CUDA架构中的一种中间表示形式(IR)语言。以下是关于它的介绍以及它与汇编语言层级关系的说明:PTX介绍•性质与作用:PTX是一种类似于汇编语言的指令集架构,但它更像是一种抽象的、面向并行计算的中间语言。它是CUDA编程模型中,主机代码与实际在GPU上执行的机器码之间的桥梁。开发者编写的CUDAC/C++等高级语言代码,在编译过程中
- CUDA编程之OpenCV与CUDA结合使用
byxdaz
CUDAopencv人工智能计算机视觉
OpenCV与CUDA的结合使用可显著提升图像处理性能。一、版本匹配与环境配置CUDA与OpenCV版本兼容性OpenCV各版本对CUDA的支持存在差异,例如OpenCV4.5.4需搭配CUDA10.02,而较新的OpenCV4.8.0需使用更高版本CUDA。需注意部分模块(如级联检测器)可能因CUDA版本更新而不再支持。OpenCV版本CUDA版本4.5.x推荐CUDA11.x及以下
- GPU编程实战指南01:CUDA编程极简手册
anda0109
CUDA并行编程算法
目录1.CUDA基础概念1.1线程层次结构1.2内存层次结构2.CUDA编程核心要素2.1核函数2.2内存管理2.3同步机制3.CUDA优化技巧3.1内存访问优化3.2共享内存使用3.3线程分配优化4.常见问题和解决方案5.实际案例分析1.CUDA基础概念1.1线程层次结构CUDA采用层次化的线程组织结构,从小到大依次为:线程(Thread):最基本的执行单元每个线程执行相同的核函数代码通过thr
- 高性能计算中如何优化内存管理?
gpu
在高性能计算(HPC)中,优化内存管理是提升计算性能的关键环节之一。以下是一些常见的优化策略和方法:内存分配与管理策略内存池技术:通过预分配一定大小的内存池,避免频繁的内存分配和释放操作,减少内存碎片化。例如,在CUDA编程中,可以使用内存池来管理GPU内存,从而提高内存访问效率。异构内存管理:在异构计算环境中(如CPU+GPU),采用统一内存管理(UnifiedMemory)或智能数据迁移策略,
- cuda编程入门——并行归约(五)
我不会打代码啊啊
cuda编程算法c++gpu算力
CUDA编程入门—并行归约(数组求和为例)在并行计算中,归约(Reduction)是一种将多个数据通过特定操作(如求和、求最大值等)合并为单一结果的并行算法。其核心目标是通过并行化加速大规模数据集的聚合计算。关键概念操作类型:可结合且可交换的操作(如加法、乘法、最大值、最小值、逻辑与/或等)适合并行归约。若操作不可结合(如减法或除法),需特殊处理或无法直接并行化。并行实现方式:树形结构归约:将数据
- cuda编程入门——并行性与异构性概念
我不会打代码啊啊
cuda编程gpu算力c++
CUDA编程入门一基于cuda的异构并行计算并行性一、并行性的概念与分类概念并行性旨在通过同时处理多个任务或数据元素来提高计算速度和效率。它可以在不同的层次上实现,包括指令级并行、数据级并行和任务级并行等。分类指令级并行(Instruction-LevelParallelism,ILP):在处理器的指令执行层面,通过硬件技术(如流水线、超标量技术等)让多条指令在不同阶段同时执行,从而提高处理器的指
- CUDA检测失败的解决方案
HackDashX
Python
CUDA检测失败的解决方案在使用Python进行CUDA编程时,有时候会遇到"CUDAdetectionfailed"的错误信息。这个错误通常表示CUDA驱动程序无法正确地检测到CUDA设备。在本文中,我将为您提供一些解决这个问题的方法。以下是一些可能的原因和相应的解决方案:CUDA驱动程序未正确安装:首先,请确保您已正确安装了与您的CUDA版本相匹配的CUDA驱动程序。您可以从NVIDIA官方网
- CUDA环境配置
波小澜
CUDAcudaubuntu环境配置
本文介绍Ubuntu14.04下CUDA环境的安装过程标签高性能计算(HPC)并行化加速学习CUDA最好的去处还是NVIDIA官网,上面许多文档写的都相当不错,比如CUDA编程指南、如何使用cuRand生成随机数等。环境配置博主主要在Linux下进行CUDA程序的开发,包括Ubuntu14.04、CentOS6等以在Ubuntu下安装CUDA为例:首先,在命令行中执行nvidia-smi指令,查看
- sql统计相同项个数并按名次显示
朱辉辉33
javaoracle
现在有如下这样一个表:
A表
ID Name time
------------------------------
0001 aaa 2006-11-18
0002 ccc 2006-11-18
0003 eee 2006-11-18
0004 aaa 2006-11-18
0005 eee 2006-11-18
0004 aaa 2006-11-18
0002 ccc 20
- Android+Jquery Mobile学习系列-目录
白糖_
JQuery Mobile
最近在研究学习基于Android的移动应用开发,准备给家里人做一个应用程序用用。向公司手机移动团队咨询了下,觉得使用Android的WebView上手最快,因为WebView等于是一个内置浏览器,可以基于html页面开发,不用去学习Android自带的七七八八的控件。然后加上Jquery mobile的样式渲染和事件等,就能非常方便的做动态应用了。
从现在起,往后一段时间,我打算
- 如何给线程池命名
daysinsun
线程池
在系统运行后,在线程快照里总是看到线程池的名字为pool-xx,这样导致很不好定位,怎么给线程池一个有意义的名字呢。参照ThreadPoolExecutor类的ThreadFactory,自己实现ThreadFactory接口,重写newThread方法即可。参考代码如下:
public class Named
- IE 中"HTML Parsing Error:Unable to modify the parent container element before the
周凡杨
html解析errorreadyState
错误: IE 中"HTML Parsing Error:Unable to modify the parent container element before the child element is closed"
现象: 同事之间几个IE 测试情况下,有的报这个错,有的不报。经查询资料后,可归纳以下原因。
- java上传
g21121
java
我们在做web项目中通常会遇到上传文件的情况,用struts等框架的会直接用的自带的标签和组件,今天说的是利用servlet来完成上传。
我们这里利用到commons-fileupload组件,相关jar包可以取apache官网下载:http://commons.apache.org/
下面是servlet的代码:
//定义一个磁盘文件工厂
DiskFileItemFactory fact
- SpringMVC配置学习
510888780
springmvc
spring MVC配置详解
现在主流的Web MVC框架除了Struts这个主力 外,其次就是Spring MVC了,因此这也是作为一名程序员需要掌握的主流框架,框架选择多了,应对多变的需求和业务时,可实行的方案自然就多了。不过要想灵活运用Spring MVC来应对大多数的Web开发,就必须要掌握它的配置及原理。
一、Spring MVC环境搭建:(Spring 2.5.6 + Hi
- spring mvc-jfreeChart 柱图(1)
布衣凌宇
jfreechart
第一步:下载jfreeChart包,注意是jfreeChart文件lib目录下的,jcommon-1.0.23.jar和jfreechart-1.0.19.jar两个包即可;
第二步:配置web.xml;
web.xml代码如下
<servlet>
<servlet-name>jfreechart</servlet-nam
- 我的spring学习笔记13-容器扩展点之PropertyPlaceholderConfigurer
aijuans
Spring3
PropertyPlaceholderConfigurer是个bean工厂后置处理器的实现,也就是BeanFactoryPostProcessor接口的一个实现。关于BeanFactoryPostProcessor和BeanPostProcessor类似。我会在其他地方介绍。PropertyPlaceholderConfigurer可以将上下文(配置文件)中的属性值放在另一个单独的标准java P
- java 线程池使用 Runnable&Callable&Future
antlove
javathreadRunnablecallablefuture
1. 创建线程池
ExecutorService executorService = Executors.newCachedThreadPool();
2. 执行一次线程,调用Runnable接口实现
Future<?> future = executorService.submit(new DefaultRunnable());
System.out.prin
- XML语法元素结构的总结
百合不是茶
xml树结构
1.XML介绍1969年 gml (主要目的是要在不同的机器进行通信的数据规范)1985年 sgml standard generralized markup language1993年 html(www网)1998年 xml extensible markup language
- 改变eclipse编码格式
bijian1013
eclipse编码格式
1.改变整个工作空间的编码格式
改变整个工作空间的编码格式,这样以后新建的文件也是新设置的编码格式。
Eclipse->window->preferences->General->workspace-
- javascript中return的设计缺陷
bijian1013
JavaScriptAngularJS
代码1:
<script>
var gisService = (function(window)
{
return
{
name:function ()
{
alert(1);
}
};
})(this);
gisService.name();
&l
- 【持久化框架MyBatis3八】Spring集成MyBatis3
bit1129
Mybatis3
pom.xml配置
Maven的pom中主要包括:
MyBatis
MyBatis-Spring
Spring
MySQL-Connector-Java
Druid
applicationContext.xml配置
<?xml version="1.0" encoding="UTF-8"?>
&
- java web项目启动时自动加载自定义properties文件
bitray
javaWeb监听器相对路径
创建一个类
public class ContextInitListener implements ServletContextListener
使得该类成为一个监听器。用于监听整个容器生命周期的,主要是初始化和销毁的。
类创建后要在web.xml配置文件中增加一个简单的监听器配置,即刚才我们定义的类。
<listener>
<des
- 用nginx区分文件大小做出不同响应
ronin47
昨晚和前21v的同事聊天,说到我离职后一些技术上的更新。其中有个给某大客户(游戏下载类)的特殊需求设计,因为文件大小差距很大——估计是大版本和补丁的区别——又走的是同一个域名,而squid在响应比较大的文件时,尤其是初次下载的时候,性能比较差,所以拆成两组服务器,squid服务于较小的文件,通过pull方式从peer层获取,nginx服务于较大的文件,通过push方式由peer层分发同步。外部发布
- java-67-扑克牌的顺子.从扑克牌中随机抽5张牌,判断是不是一个顺子,即这5张牌是不是连续的.2-10为数字本身,A为1,J为11,Q为12,K为13,而大
bylijinnan
java
package com.ljn.base;
import java.util.Arrays;
import java.util.Random;
public class ContinuousPoker {
/**
* Q67 扑克牌的顺子 从扑克牌中随机抽5张牌,判断是不是一个顺子,即这5张牌是不是连续的。
* 2-10为数字本身,A为1,J为1
- 翟鸿燊老师语录
ccii
翟鸿燊
一、国学应用智慧TAT之亮剑精神A
1. 角色就是人格
就像你一回家的时候,你一进屋里面,你已经是儿子,是姑娘啦,给老爸老妈倒怀水吧,你还觉得你是老总呢?还拿派呢?就像今天一样,你们往这儿一坐,你们之间是什么,同学,是朋友。
还有下属最忌讳的就是领导向他询问情况的时候,什么我不知道,我不清楚,该你知道的你凭什么不知道
- [光速与宇宙]进行光速飞行的一些问题
comsci
问题
在人类整体进入宇宙时代,即将开展深空宇宙探索之前,我有几个猜想想告诉大家
仅仅是猜想。。。未经官方证实
1:要在宇宙中进行光速飞行,必须首先获得宇宙中的航行通行证,而这个航行通行证并不是我们平常认为的那种带钢印的证书,是什么呢? 下面我来告诉
- oracle undo解析
cwqcwqmax9
oracle
oracle undo解析2012-09-24 09:02:01 我来说两句 作者:虫师收藏 我要投稿
Undo是干嘛用的? &nb
- java中各种集合的详细介绍
dashuaifu
java集合
一,java中各种集合的关系图 Collection 接口的接口 对象的集合 ├ List 子接口 &n
- 卸载windows服务的方法
dcj3sjt126com
windowsservice
卸载Windows服务的方法
在Windows中,有一类程序称为服务,在操作系统内核加载完成后就开始加载。这里程序往往运行在操作系统的底层,因此资源占用比较大、执行效率比较高,比较有代表性的就是杀毒软件。但是一旦因为特殊原因不能正确卸载这些程序了,其加载在Windows内的服务就不容易删除了。即便是删除注册表中的相 应项目,虽然不启动了,但是系统中仍然存在此项服务,只是没有加载而已。如果安装其他
- Warning: The Copy Bundle Resources build phase contains this target's Info.plist
dcj3sjt126com
iosxcode
http://developer.apple.com/iphone/library/qa/qa2009/qa1649.html
Excerpt:
You are getting this warning because you probably added your Info.plist file to your Copy Bundle
- 2014之C++学习笔记(一)
Etwo
C++EtwoEtwoiterator迭代器
已经有很长一段时间没有写博客了,可能大家已经淡忘了Etwo这个人的存在,这一年多以来,本人从事了AS的相关开发工作,但最近一段时间,AS在天朝的没落,相信有很多码农也都清楚,现在的页游基本上达到饱和,手机上的游戏基本被unity3D与cocos占据,AS基本没有容身之处。so。。。最近我并不打算直接转型
- js跨越获取数据问题记录
haifengwuch
jsonpjsonAjax
js的跨越问题,普通的ajax无法获取服务器返回的值。
第一种解决方案,通过getson,后台配合方式,实现。
Java后台代码:
protected void doPost(HttpServletRequest req, HttpServletResponse resp)
throws ServletException, IOException {
String ca
- 蓝色jQuery导航条
ini
JavaScripthtmljqueryWebhtml5
效果体验:http://keleyi.com/keleyi/phtml/jqtexiao/39.htmHTML文件代码:
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>jQuery鼠标悬停上下滑动导航条 - 柯乐义<
- linux部署jdk,tomcat,mysql
kerryg
jdktomcatlinuxmysql
1、安装java环境jdk:
一般系统都会默认自带的JDK,但是不太好用,都会卸载了,然后重新安装。
1.1)、卸载:
(rpm -qa :查询已经安装哪些软件包;
rmp -q 软件包:查询指定包是否已
- DOMContentLoaded VS onload VS onreadystatechange
mutongwu
jqueryjs
1. DOMContentLoaded 在页面html、script、style加载完毕即可触发,无需等待所有资源(image/iframe)加载完毕。(IE9+)
2. onload是最早支持的事件,要求所有资源加载完毕触发。
3. onreadystatechange 开始在IE引入,后来其它浏览器也有一定的实现。涉及以下 document , applet, embed, fra
- sql批量插入数据
qifeifei
批量插入
hi,
自己在做工程的时候,遇到批量插入数据的数据修复场景。我的思路是在插入前准备一个临时表,临时表的整理就看当时的选择条件了,临时表就是要插入的数据集,最后再批量插入到数据库中。
WITH tempT AS (
SELECT
item_id AS combo_id,
item_id,
now() AS create_date
FROM
a
- log4j打印日志文件 如何实现相对路径到 项目工程下
thinkfreer
Weblog4j应用服务器日志
最近为了实现统计一个网站的访问量,记录用户的登录信息,以方便站长实时了解自己网站的访问情况,选择了Apache 的log4j,但是在选择相对路径那块 卡主了,X度了好多方法(其实大多都是一样的内用,还一个字都不差的),都没有能解决问题,无奈搞了2天终于解决了,与大家分享一下
需求:
用户登录该网站时,把用户的登录名,ip,时间。统计到一个txt文档里,以方便其他系统调用此txt。项目名
- linux下mysql-5.6.23.tar.gz安装与配置
笑我痴狂
mysqllinuxunix
1.卸载系统默认的mysql
[root@localhost ~]# rpm -qa | grep mysql
mysql-libs-5.1.66-2.el6_3.x86_64
mysql-devel-5.1.66-2.el6_3.x86_64
mysql-5.1.66-2.el6_3.x86_64
[root@localhost ~]# rpm -e mysql-libs-5.1