- chatgpt赋能python:Python降噪技术突出人声,在语音处理中的应用
atest166
ChatGptchatgptpython语音识别计算机
Python降噪技术突出人声,在语音处理中的应用在现代社会中,语音处理已经成为了一个普遍的技术,由于环境干扰和录音设备的限制,录音中往往会有许多杂音和噪音,影响语音质量和信号分析。在此背景下,降噪技术逐渐成为了一项重要的技术手段。Python作为一门功能强大的编程语言,可以被广泛地应用于语音处理,尤其是在降噪方面。在本篇文章中,我们会详细探讨Python降噪技术突出人声的应用。什么是语音降噪?语音
- Python 语音识别系列-实战学习-语音识别特征提取
Python语音识别系列-实战学习-语音识别特征提取前言1.预加重、分帧和加窗2.提取特征3.可视化特征4.总结前言语音识别特征提取是语音处理中的一个重要环节,其主要任务是将连续的时域语音信号转换为连续的特征向量,以便于后续的语音识别和语音处理任务。在特征提取阶段,这些特征向量能够捕捉到语音信号中的关键信息,如音调、音色和音节等。特征提取主要可以分为以下几个方面:时域特征提取:包括自相关函数、方差
- Python 语音识别与语音合成的实现方法
加班不如去钓鱼
python语音识别xcode
```htmlPython语音识别与语音合成的实现方法Python语音识别与语音合成的实现方法随着人工智能技术的发展,语音处理在实际应用中变得越来越重要。Python作为一种功能强大的编程语言,提供了丰富的库和工具来实现语音识别和语音合成的功能。本文将详细介绍如何使用Python实现语音识别与语音合成。一、语音识别语音识别(SpeechRecognition)是将人类的语音转换为文本的过程。Pyt
- 从零开始:用Python构建AI语音识别应用的完整指南
AI大模型应用之禅
人工智能python语音识别ai
从零开始:用Python构建AI语音识别应用的完整指南关键词:Python语音识别、AI语音处理、语音转文本、SpeechRecognition库、端到端模型摘要:本文从0到1带您掌握用Python构建AI语音识别应用的全流程。我们将用“给小学生讲故事”的方式,拆解语音识别的核心概念(如音频采集、特征提取、模型解码),结合代码实战(从调用API到自定义模型),并覆盖环境搭建、常见问题和未来趋势。无
- 卷积神经网络
亿只小灿灿
Python算法与数据结构人工智能cnn人工智能神经网络
一、引言在当今人工智能的浪潮中,卷积神经网络(ConvolutionalNeuralNetwork,CNN)无疑是一颗璀璨的明星。它在图像识别、语音处理、自然语言处理等众多领域取得了巨大的成功,极大地推动了人工智能技术的发展。那么,什么是卷积神经网络?它的算法原理是什么?本文将深入探讨这些问题,并通过Python代码实现一个简单的卷积神经网络,以帮助读者更好地理解和掌握这一强大的技术。二、卷积神经
- WebRTC 语音激活检测(VAD)算法
u013250861
Audiowebrtc算法语音识别
语音激活检测最早应用于电话传输和检测系统当中,用于通信信道的时间分配,提高传输线路的利用效率。激活检测属于语音处理系统的前端操作,在语音检测领域意义重大。但是目前的语音激活检测,尤其是检测人声开始和结束的端点始终是属于技术难点,各家公司始终处于能判断,但是不敢保证判别准确性的阶段。通常搭建机器人聊天系统主要包括以下三个方面:语音转文字(ASR/STT)语义内容(NLU/NLP)文字转语音(TTS)
- AI芯片设计与神经网络加速
华清远见成都中心
人工智能神经网络深度学习
随着人工智能技术的飞速发展,神经网络在图像识别、语音处理、自然语言理解等众多领域取得了显著成就。然而,神经网络的大规模计算需求对传统计算芯片提出了严峻挑战。AI芯片应运而生,其设计目的便是为神经网络提供高效的计算支持,实现神经网络的加速运行。深入研究AI芯片设计与神经网络加速技术,对于推动人工智能技术的广泛应用和进一步发展具有重要意义。一、AI芯片设计基础·计算架构:是AI芯片设计的核心。常见的计
- 语音活动检测模型SileroVAD
大囚长
大模型人工智能
SileroVAD是一款专注于语音活动检测(VAD)的轻量级开源模型,凭借其高效率、低延迟和跨平台特性,成为实时语音处理系统的核心组件。一、核心功能与技术优势轻量高效SileroVAD模型体积仅1.8MB,支持1ms内处理30ms音频块,适用于边缘设备实时处理。其推理速度在单线程CPU上可达2-3倍于PyTorch版本(ONNX优化后),且支持批量处理以提升吞吐量。高精度检测基于深度学习(CNN/
- sherpa-onnx开源语音处理框架研究报告:从技术解析到应用实践
chanalbert
AI开源分享开源pythonc++java
1项目概述与技术背景开源地址:https://github.com/k2-fsa/sherpa-onnxsherpa-onnx是一个基于下一代Kaldi和ONNX运行时的开源语音处理框架,由K2-FSA团队开发并维护。该项目专注于提供跨平台、高效率的语音处理能力,支持在完全离线的环境中运行语音识别(ASR)、文本转语音(TTS)、说话人识别、语音活动检测(VAD)等多项功能。与依赖云服务的传统语音
- Whisper使AI人工智能语音识别更精准可靠
AI天才研究院
AI大模型企业级应用开发实战人工智能whisper语音识别ai
Whisper使AI人工智能语音识别更精准可靠关键词:Whisper、语音识别、AI模型、自动语音识别(ASR)、深度学习、Transformer、语音处理摘要:本文深入探讨了OpenAI开发的Whisper语音识别系统如何通过创新的深度学习架构显著提升语音识别的准确性和可靠性。我们将从技术原理、模型架构、实现细节到实际应用场景,全面分析Whisper如何克服传统语音识别系统的局限性,以及它为何成
- 音元分析法的价值
音元系统
音元系统#音元输入法人工智能语音识别语言模型自然语言处理
音元分析法的价值把现行的二维音节结构:音调维的声调与音质维的(声母和韵母)构成的音节,其中,声母由音素或音位充当/韵母由音素或音位构成,分析成或变换成一维的(音值维的)音元或片音构成的序列。这个项目有价值吗?AI分析AI的看法是:将音节的二维结构(声调+音质)转换为一维音元序列的方法,从项目结构看,当前项目已经建立了完整的语音处理系统,包括yinjie.py、shouyin.py、ganyin.p
- 【技术观点】AI大语言模型10大安全风险的思考
yxiaoyu__
人工智能语言模型安全
大模型应用已经真实来到我们每个人身边,在自然语言处理、图像识别、语音处理等领域展现出了前所未有的能力,影响着各行各业的发展。随着大模型应用的日益广泛,其安全问题也变得愈发重要。大模型训练需要大量数据,可能包含敏感信息(如个人信息、商业秘密等),造成信息泄漏;攻击者可以通过精心设计的输入(对抗性样本)欺骗AI模型,导致错误的输出,对自动驾驶、医疗诊断等构成严重威胁;大模型还可能被用于生成虚假信息、传
- 探索语音处理新纪元:WebRTC Audio Processing for Python
金畏战Goddard
探索语音处理新纪元:WebRTCAudioProcessingforPython去发现同类优质开源项目:https://gitcode.com/在数字时代,清晰、高效的音频通信是连接世界的基石。今天,我们为您介绍一个强大而灵活的开源工具——WebRTCAudioProcessingforPython,它将WebRTC先进的音频处理能力无缝引入Python生态系统,解锁高质量音频应用的新可能。项目介
- 强大而全面的语音处理工具——Sherpa-Onnx
郜里富
强大而全面的语音处理工具——Sherpa-Onnx项目地址:https://gitcode.com/gh_mirrors/sh/sherpa-onnx在人工智能的浪潮中,语音技术已成为连接人机的重要桥梁。今天,我们要向您隆重推荐一个开源宝藏——Sherpa-Onnx,一个集多种语音功能于一体的强大本地运行库,完美适配从服务器到边缘设备的各种场景。项目介绍Sherpa-Onnx是一款开源的语音处理神
- 手把手带你玩转声网ESP32大模型+TEN语音交互——零硬件基础也能懂!以AI智能眼镜为例
夜信431
交互人工智能stm32智能硬件深度学习
一、方案全景解析——智能眼镜的"最强大脑"(附硬件架构图:智能眼镜+ESP32-S3核心板+声网SDK)这套开源方案的核心是将大模型塞进智能眼镜!就像给你的眼镜装了个SiriProMax:硬件核心:ESP32-S3芯片(性能≈手机芯片的1/5,但功耗仅0.1W)魔法组件:声网SDK(让眼镜能像微信语音通话一样实时对话)创新点:通过按键唤醒+本地语音处理+云端大模型推理(延迟<300ms)二、硬件小
- AIGC 技术解析:Whisper 的低延迟语音识别
AI大模型应用之禅
AIGCwhisper语音识别
AIGC技术解析:Whisper的低延迟语音识别关键词:AIGC、Whisper、语音识别、低延迟、Transformer、端到端学习、语音处理摘要:本文深入解析OpenAIWhisper模型的低延迟语音识别技术。我们将从语音识别的基本原理出发,详细探讨Whisper的架构设计、核心算法、数学模型以及实现细节。文章包含完整的Python代码示例,展示如何在实际项目中应用Whisper进行低延迟语音
- AIxBoard部署BLIP模型进行图文问答
vslyu
深度学习openvino
一、AIxBoard简介AIxBoard(X板)是一款IA架构的人工智能嵌入式开发板,体积小巧功能强大,可让您在图像分类、目标检测、分割和语音处理等应用中并行运行多个神经网络。它是一款面向专业创客、开发者的功能强大的小型计算机,借助OpenVINO工具套件,CPU、iGPU都具备强劲的AI推理能力,基于AI的产品进行原型设计并将其快速推向市场的理想解决方案。二、多模态模型简介近年来,计算机视觉和自
- 在 React Native 中使用 Whisper 进行语音识别
pxr007
reactnativewhisper语音识别
在本文中,我们将使用Whisper创建语音转文本应用程序。Whisper需要Python后端,因此我们将使用Flask为应用程序创建服务器。ReactNative作为构建移动客户端的框架。我希望您喜欢创建此应用程序的过程,因为我确实这样做了。让我们直接深入研究它。什么是语音识别?语音识别使程序能够将人类语音处理成书面格式。语法、句法、结构和音频对于理解和处理人类语音至关重要。语音识别算法是计算机科
- 华为HCIP-AI认证题库中的部分问题
2301_82241859
程序员华为人工智能
D:类间方差答案:D6、语音识别技术就是让机器通过识别和理解把文本转换为语音的技术。A:TrueB:False答案:B8、由于现代的语音处理技术都以数字计算为基础,因此也称其为数字语音信号处理。A:TrueB:False答案:A9、不属于语音声学特征的是?A:频率B:语义C:时长D:振幅答案:B10、属于语言学内容的是?A:文字B:语音C:词汇D:语法答案:A,B,C,D11、语音合成方法有哪些?
- 深度学习芯片的数据预取机制与片上缓存交错策略研究
学习ing1
深度学习缓存智能电视
1.引言1.1研究背景与意义随着人工智能的快速发展,深度学习在图像识别、语音处理、自然语言处理等领域取得了巨大成功。深度学习芯片作为实现深度学习算法的关键硬件平台,其性能直接影响到深度学习系统的效率和应用范围。深度学习算法通常需要处理大量的数据和复杂的计算任务,这使得数据传输和存储成为性能瓶颈。数据预取机制和片上缓存交错策略是解决这一瓶颈的重要手段。数据预取机制通过预测处理器未来需要的数据并提前加
- RISC-V NPU语音转换实战指南:从芯片选型到代码优化
Android洋芋
RISC-V架构EIC7700X芯片RISC-VNPU语音DSP/NPU加速器TensorFlow框架PyTorch
简介RISC-V架构凭借其开源性、模块化和高性能,在AI语音处理领域展现出巨大潜力。本项目将探索如何在国产RISC-V服务器上实现语音转换模型的NPU适配与优化,涉及端到端模型设计、硬件驱动开发、INT8量化算子实现及深度学习框架集成等核心技术。通过结合EIC7700X芯片的硬件特性与语音转换任务特点,打造高性能、低延迟的语音处理系统,满足边缘计算场景下的实时语音转换需求。一、RISC-V架构与E
- 快速了解GPT-4o和GPT-4区别
rs勿忘初心
#AI大模型人工智能chatgptGPT-4oGPT4与GPT4o区别gpt4介绍
GPT-4o简介在5月14日的OpenAI举行春季发布会上,OpenAI在活动中发布了新旗舰模型“GPT-4o”!据OpenAI首席技术官穆里·穆拉蒂(MuriMurati)介绍,GPT-4o在继承GPT-4强大智能的同时,进一步提升了文本、图像及语音处理能力,为用户带来更加流畅、自然的交互体验。GPT-4o的“o”代表“omni”,源自拉丁语“omnis”。在英语中“omni”常被用作词根,用来
- 智能语音处理+1.3用SpeechLib实现文本转语音(100%教会)
胡萝卜不甜
智能语音处理语音识别人工智能python机器学习
欢迎来到智能语音处理系列的第三篇文章(用SpeechLib实现文本转语音)这是前两篇文章的地址:第一篇:智能语音处理+1.1下载需要的库(100%实现)-CSDN博客第二篇:智能语音识别+1.2用SAPI实现文本转语音(100%教会)-CSDN博客不好意思啊,各位读者,没把握好力度,原本预设的3篇文章,预计会多出两章.请大家见谅,一.简单介绍使用的库comtypes是另一个Python库,用于操作
- 【语音识别】基于matlab男女声在线识别【含Matlab源码 8997期】
Matlab研究室
matlab
欢迎来到Matlab研究室博客之家✅博主简介:985研究生,热爱科研的Matlab仿真开发者,完整代码论文复现程序定制期刊写作科研合作扫描文章底部QQ二维码或私信博主。个人主页:Matlab研究室代码获取方式:扫描文章底部QQ二维码或私信博主⛳️座右铭:行百里者,半于九十;路漫漫其修远兮,吾将上下而求索。更多Matlab语音处理仿真内容点击①Matlab
- 主流大模型架构
Jeremg
架构
什么是大模型架构大模型架构是指用于构建大规模人工智能模型的特定结构和设计模式,旨在处理海量数据、学习复杂的模式和关系,并实现强大的语言理解、生成、图像识别、语音处理等多种智能任务。以下是一些常见的大模型架构的特点、组成和应用:特点大规模参数:包含大量的参数,通常数以亿计甚至更多,以学习丰富的知识和模式,例如GPT-3拥有1750亿个参数。强大的表示能力:能够对各种类型的数据进行高效的表示和处理,捕
- Sherpa-ONNX:说话人识别与语音识别自动开启(VAD)+ Python API 完整指南
一只蜗牛儿
语音识别python人工智能
介绍Sherpa-ONNX是一个基于ONNX的轻量级语音识别框架,支持多种语音处理任务,包括说话人识别(SpeakerRecognition)和自动语音识别(AutomaticSpeechRecognition,ASR)。在本指南中,我们将重点介绍如何使用Sherpa-ONNX进行说话人识别、自动开启语音识别(VAD)以及如何通过PythonAPI进行操作。安装环境在开始之前,确保你的系统上已安装
- AI API:快速集成智能化功能的开发利器
桂花饼
AIGCAIAPI人工智能AIGC语言模型AI作画
AIAPI(ArtificialIntelligenceApplicationProgrammingInterface,人工智能应用程序接口)是应用程序接口的一种,专门用于提供人工智能相关功能的开发接口。它允许开发者利用现有的AI模型、工具或服务,将这些功能集成到自己的应用程序中,并为用户带来智能化的体验。AIAPI的核心功能主要与AI技术相关,比如自然语言处理(NLP)、计算机视觉、语音处理、机
- 云原生周刊:基于 KubeSphere LuBan 架构打造DeepSeek 插件
云计算
开源项目推荐KubeAIKubeAI是一个K8s上的AI推理操作器,旨在简化在生产环境中部署和管理大型语言模型(LLM)、向量嵌入和语音处理等机器学习模型。它提供与OpenAI兼容的API,支持在CPU和GPU上运行,并具备按需自动扩缩容的能力。KubeAI无需依赖Istio、Knative等其他系统,能够在几乎任何K8s集群中开箱即用。此外,它内置了模型代理,优化了键值缓存利用率,从而显著提升系
- Meta 计划在 Llama 4 中引入改进的语音功能,接近双向自然对话
timer_017
llama
据英国《金融时报》3月7日报道,Meta首席产品官ChrisCox透露,Llama4将是一个“全能模型”,语音功能将是原生的1。关于Meta计划在Llama4中引入改进语音功能并接近双向自然对话,具体情况如下1:功能特点原生语音处理:Llama4能够直接处理语音信息,无需先将语音转换为文本再输入模型处理,最后又将文本转换回语音,可极大提升语音交互的效率和流畅度。双向自然对话:Meta一直特别注重使
- 【深度学习】Hopfield网络:模拟联想记忆
T-I-M
深度学习人工智能
Transformer优化,什么是稀疏注意力?Transformer模型自2017年被提出以来,已经成为自然语言处理(NLP)领域的核心架构,并在计算机视觉、语音处理等其他领域也取得了显著的成功。然而,随着模型规模的不断增大和任务复杂性的提升,Transformer的计算成本和内存需求也随之激增。为了解决这一问题,研究者们提出了多种优化方法,其中稀疏注意力(SparseAttention)是一种备
- Spring4.1新特性——综述
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- Schema与数据类型优化
annan211
数据结构mysql
目前商城的数据库设计真是一塌糊涂,表堆叠让人不忍直视,无脑的架构师,说了也不听。
在数据库设计之初,就应该仔细揣摩可能会有哪些查询,有没有更复杂的查询,而不是仅仅突出
很表面的业务需求,这样做会让你的数据库性能成倍提高,当然,丑陋的架构师是不会这样去考虑问题的。
选择优化的数据类型
1 更小的通常更好
更小的数据类型通常更快,因为他们占用更少的磁盘、内存和cpu缓存,
- 第一节 HTML概要学习
chenke
htmlWebcss
第一节 HTML概要学习
1. 什么是HTML
HTML是英文Hyper Text Mark-up Language(超文本标记语言)的缩写,它规定了自己的语法规则,用来表示比“文本”更丰富的意义,比如图片,表格,链接等。浏览器(IE,FireFox等)软件知道HTML语言的语法,可以用来查看HTML文档。目前互联网上的绝大部分网页都是使用HTML编写的。
打开记事本 输入一下内
- MyEclipse里部分习惯的更改
Array_06
eclipse
继续补充中----------------------
1.更改自己合适快捷键windows-->prefences-->java-->editor-->Content Assist-->
Activation triggers for java的右侧“.”就可以改变常用的快捷键
选中 Text
- 近一个月的面试总结
cugfy
面试
本文是在学习中的总结,欢迎转载但请注明出处:http://blog.csdn.net/pistolove/article/details/46753275
前言
打算换个工作,近一个月面试了不少的公司,下面将一些面试经验和思考分享给大家。另外校招也快要开始了,为在校的学生提供一些经验供参考,希望都能找到满意的工作。 
- HTML5一个小迷宫游戏
357029540
html5
通过《HTML5游戏开发》摘抄了一个小迷宫游戏,感觉还不错,可以画画,写字,把摘抄的代码放上来分享下,喜欢的同学可以拿来玩玩!
<html>
<head>
<title>创建运行迷宫</title>
<script type="text/javascript"
- 10步教你上传githib数据
张亚雄
git
官方的教学还有其他博客里教的都是给懂的人说得,对已我们这样对我大菜鸟只能这么来锻炼,下面先不玩什么深奥的,先暂时用着10步干净利索。等玩顺溜了再用其他的方法。
操作过程(查看本目录下有哪些文件NO.1)ls
(跳转到子目录NO.2)cd+空格+目录
(继续NO.3)ls
(匹配到子目录NO.4)cd+ 目录首写字母+tab键+(首写字母“直到你所用文件根就不再按TAB键了”)
(查看文件
- MongoDB常用操作命令大全
adminjun
mongodb操作命令
成功启动MongoDB后,再打开一个命令行窗口输入mongo,就可以进行数据库的一些操作。输入help可以看到基本操作命令,只是MongoDB没有创建数据库的命令,但有类似的命令 如:如果你想创建一个“myTest”的数据库,先运行use myTest命令,之后就做一些操作(如:db.createCollection('user')),这样就可以创建一个名叫“myTest”的数据库。
一
- bat调用jar包并传入多个参数
aijuans
下面的主程序是通过eclipse写的:
1.在Main函数接收bat文件传递的参数(String[] args)
如: String ip =args[0]; String user=args[1]; &nbs
- Java中对类的主动引用和被动引用
ayaoxinchao
java主动引用对类的引用被动引用类初始化
在Java代码中,有些类看上去初始化了,但其实没有。例如定义一定长度某一类型的数组,看上去数组中所有的元素已经被初始化,实际上一个都没有。对于类的初始化,虚拟机规范严格规定了只有对该类进行主动引用时,才会触发。而除此之外的所有引用方式称之为对类的被动引用,不会触发类的初始化。虚拟机规范严格地规定了有且仅有四种情况是对类的主动引用,即必须立即对类进行初始化。四种情况如下:1.遇到ne
- 导出数据库 提示 outfile disabled
BigBird2012
mysql
在windows控制台下,登陆mysql,备份数据库:
mysql>mysqldump -u root -p test test > D:\test.sql
使用命令 mysqldump 格式如下: mysqldump -u root -p *** DBNAME > E:\\test.sql。
注意:执行该命令的时候不要进入mysql的控制台再使用,这样会报
- Javascript 中的 && 和 ||
bijian1013
JavaScript&&||
准备两个对象用于下面的讨论
var alice = {
name: "alice",
toString: function () {
return this.name;
}
}
var smith = {
name: "smith",
- [Zookeeper学习笔记之四]Zookeeper Client Library会话重建
bit1129
zookeeper
为了说明问题,先来看个简单的示例代码:
package com.tom.zookeeper.book;
import com.tom.Host;
import org.apache.zookeeper.WatchedEvent;
import org.apache.zookeeper.ZooKeeper;
import org.apache.zookeeper.Wat
- 【Scala十一】Scala核心五:case模式匹配
bit1129
scala
package spark.examples.scala.grammars.caseclasses
object CaseClass_Test00 {
def simpleMatch(arg: Any) = arg match {
case v: Int => "This is an Int"
case v: (Int, String)
- 运维的一些面试题
yuxianhua
linux
1、Linux挂载Winodws共享文件夹
mount -t cifs //1.1.1.254/ok /var/tmp/share/ -o username=administrator,password=yourpass
或
mount -t cifs -o username=xxx,password=xxxx //1.1.1.1/a /win
- Java lang包-Boolean
BrokenDreams
boolean
Boolean类是Java中基本类型boolean的包装类。这个类比较简单,直接看源代码吧。
public final class Boolean implements java.io.Serializable,
- 读《研磨设计模式》-代码笔记-命令模式-Command
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.ArrayList;
import java.util.Collection;
import java.util.List;
/**
* GOF 在《设计模式》一书中阐述命令模式的意图:“将一个请求封装
- matlab下GPU编程笔记
cherishLC
matlab
不多说,直接上代码
gpuDevice % 查看系统中的gpu,,其中的DeviceSupported会给出matlab支持的GPU个数。
g=gpuDevice(1); %会清空 GPU 1中的所有数据,,将GPU1 设为当前GPU
reset(g) %也可以清空GPU中数据。
a=1;
a=gpuArray(a); %将a从CPU移到GPU中
onGP
- SVN安装过程
crabdave
SVN
SVN安装过程
subversion-1.6.12
./configure --prefix=/usr/local/subversion --with-apxs=/usr/local/apache2/bin/apxs --with-apr=/usr/local/apr --with-apr-util=/usr/local/apr --with-openssl=/
- sql 行列转换
daizj
sql行列转换行转列列转行
行转列的思想是通过case when 来实现
列转行的思想是通过union all 来实现
下面具体例子:
假设有张学生成绩表(tb)如下:
Name Subject Result
张三 语文 74
张三 数学 83
张三 物理 93
李四 语文 74
李四 数学 84
李四 物理 94
*/
/*
想变成
姓名 &
- MySQL--主从配置
dcj3sjt126com
mysql
linux下的mysql主从配置: 说明:由于MySQL不同版本之间的(二进制日志)binlog格式可能会不一样,因此最好的搭配组合是Master的MySQL版本和Slave的版本相同或者更低, Master的版本肯定不能高于Slave版本。(版本向下兼容)
mysql1 : 192.168.100.1 //master mysq
- 关于yii 数据库添加新字段之后model类的修改
dcj3sjt126com
Model
rules:
array('新字段','safe','on'=>'search')
1、array('新字段', 'safe')//这个如果是要用户输入的话,要加一下,
2、array('新字段', 'numerical'),//如果是数字的话
3、array('新字段', 'length', 'max'=>100),//如果是文本
1、2、3适当的最少要加一条,新字段才会被
- sublime text3 中文乱码解决
dyy_gusi
Sublime Text
sublime text3中文乱码解决
原因:缺少转换为UTF-8的插件
目的:安装ConvertToUTF8插件包
第一步:安装能自动安装插件的插件,百度“Codecs33”,然后按照步骤可以得到以下一段代码:
import urllib.request,os,hashlib; h = 'eb2297e1a458f27d836c04bb0cbaf282' + 'd0e7a30980927
- 概念了解:CGI,FastCGI,PHP-CGI与PHP-FPM
geeksun
PHP
CGI
CGI全称是“公共网关接口”(Common Gateway Interface),HTTP服务器与你的或其它机器上的程序进行“交谈”的一种工具,其程序须运行在网络服务器上。
CGI可以用任何一种语言编写,只要这种语言具有标准输入、输出和环境变量。如php,perl,tcl等。 FastCGI
FastCGI像是一个常驻(long-live)型的CGI,它可以一直执行着,只要激活后,不
- Git push 报错 "error: failed to push some refs to " 解决
hongtoushizi
git
Git push 报错 "error: failed to push some refs to " .
此问题出现的原因是:由于远程仓库中代码版本与本地不一致冲突导致的。
由于我在第一次git pull --rebase 代码后,准备push的时候,有别人往线上又提交了代码。所以出现此问题。
解决方案:
1: git pull
2:
- 第四章 Lua模块开发
jinnianshilongnian
nginxlua
在实际开发中,不可能把所有代码写到一个大而全的lua文件中,需要进行分模块开发;而且模块化是高性能Lua应用的关键。使用require第一次导入模块后,所有Nginx 进程全局共享模块的数据和代码,每个Worker进程需要时会得到此模块的一个副本(Copy-On-Write),即模块可以认为是每Worker进程共享而不是每Nginx Server共享;另外注意之前我们使用init_by_lua中初
- java.lang.reflect.Proxy
liyonghui160com
1.简介
Proxy 提供用于创建动态代理类和实例的静态方法
(1)动态代理类的属性
代理类是公共的、最终的,而不是抽象的
未指定代理类的非限定名称。但是,以字符串 "$Proxy" 开头的类名空间应该为代理类保留
代理类扩展 java.lang.reflect.Proxy
代理类会按同一顺序准确地实现其创建时指定的接口
- Java中getResourceAsStream的用法
pda158
java
1.Java中的getResourceAsStream有以下几种: 1. Class.getResourceAsStream(String path) : path 不以’/'开头时默认是从此类所在的包下取资源,以’/'开头则是从ClassPath根下获取。其只是通过path构造一个绝对路径,最终还是由ClassLoader获取资源。 2. Class.getClassLoader.get
- spring 包官方下载地址(非maven)
sinnk
spring
SPRING官方网站改版后,建议都是通过 Maven和Gradle下载,对不使用Maven和Gradle开发项目的,下载就非常麻烦,下给出Spring Framework jar官方直接下载路径:
http://repo.springsource.org/libs-release-local/org/springframework/spring/
s
- Oracle学习笔记(7) 开发PLSQL子程序和包
vipbooks
oraclesql编程
哈哈,清明节放假回去了一下,真是太好了,回家的感觉真好啊!现在又开始出差之旅了,又好久没有来了,今天继续Oracle的学习!
这是第七章的学习笔记,学习完第六章的动态SQL之后,开始要学习子程序和包的使用了……,希望大家能多给俺一些支持啊!
编程时使用的工具是PLSQL