5.除了CAS,原子类,syn,Lock还有什么线程安全的方式

 5.除了CAS,原子类,syn,Lock还有什么线程安全的方式 
volatile
Volatile 变量具有 synchronized 的可见性特性,但是不具备原子性。这就是说线程能够自动发现 volatile 变量的最新值。

Volatile 变量可用于提供线程安全,但是只能应用于非常有限的一组用例:多个变量之间或者某个变量的当前值与修改后值之间没有约束。因此,单独使用 volatile 还不足以实现计数器、互斥锁或任何具有与多个变量相关的不变式(Invariants)的类(例如 “start <=end”)。

出于简易性或可伸缩性的考虑,您可能倾向于使用 volatile 变量而不是锁。当使用 volatile 变量而非锁时,某些习惯用法(idiom)更加易于编码和阅读。此外,volatile 变量不会像锁那样造成线程阻塞,因此也很少造成可伸缩性问题。在某些情况下,如果读操作远远大于写操作,volatile 变量还可以提供优于锁的性能优势。
 

如何确保线程安全?

提到线程安全:我们必须要先了解多线程编程的三个核心概念:原子性(atomicity)、可见性(visibility)、顺序性

原子性(atomicity)

这一点,跟数据库事务的原子性概念差不多,即一个操作(有可能包含有多个子操作)要么全部执行(生效),要么全部都不执行(都不生效)。

关于原子性,一个非常经典的例子就是银行转账问题:比如A和B同时向C转账10万元。如果转账操作不具有原子性,A在向C转账时,读取了C的余额为20万,然后加上转账的10万,计算出此时应该有30万,但还未来及将30万写回C的账户,此时B的转账请求过来了,B发现C的余额为20万,然后将其加10万并写回。然后A的转账操作继续——将30万写回C的余额。这种情况下C的最终余额为30万,而非预期的40万。

可见性(visibility)

可见性是指,当多个线程并发访问共享变量时,一个线程对共享变量的修改,其它线程能够立即看到。可见性问题是好多人忽略或者理解错误的一点。

CPU从主内存中读数据的效率相对来说不高,现在主流的计算机中,都有几级缓存。每个线程读取共享变量时,都会将该变量加载进其对应CPU的高速缓存里,修改该变量后,CPU会立即更新该缓存,但并不一定会立即将其写回主内存(实际上写回主内存的时间不可预期)。此时其它线程(尤其是不在同一个CPU上执行的线程)访问该变量时,从主内存中读到的就是旧的数据,而非第一个线程更新后的数据。

这一点是操作系统或者说是硬件层面的机制,所以很多应用开发人员经常会忽略。

顺序性

顺序性指的是,程序执行的顺序按照代码的先后顺序执行。

以下面这段代码为例

boolean started = false; // 语句1
long counter = 0L; // 语句2
counter = 1; // 语句3
started = true; // 语句4

从代码顺序上看,上面四条语句应该依次执行,但实际上JVM真正在执行这段代码时,并不保证它们一定完全按照此顺序执行。

处理器为了提高程序整体的执行效率,可能会对代码进行优化,其中的一项优化方式就是调整代码顺序,按照更高效的顺序执行代码。

讲到这里,有人要着急了——什么,CPU不按照我的代码顺序执行代码,那怎么保证得到我们想要的效果呢?实际上,大家大可放心,CPU虽然并不保证完全按照代码顺序执行,但它会保证程序最终的执行结果和代码顺序执行时的结果一致。

Java如何保证原子性

锁和同步

常用的保证Java操作原子性的工具是锁和同步方法(或者同步代码块)。使用锁,可以保证同一时间只有一个线程能拿到锁,也就保证了同一时间只有一个线程能执行申请锁和释放锁之间的代码。

public void testLock () {
  lock.lock();
  try{
    int j = i;
    i = j + 1;
  } finally {
    lock.unlock();
  }
}

与锁类似的是同步方法或者同步代码块。使用非静态同步方法时,锁住的是当前实例;使用静态同步方法时,锁住的是该类的Class对象;使用静态代码块时,锁住的是synchronized关键字后面括号内的对象。下面是同步代码块示例

public void testLock () {
  synchronized (anyObject){
    int j = i;
    i = j + 1;
  }
}

无论使用锁还是synchronized,本质都是一样,通过锁来实现资源的排它性,从而实际目标代码段同一时间只会被一个线程执行,进而保证了目标代码段的原子性。这是一种以牺牲性能为代价的方法。

CAS(compare and swap)

基础类型变量自增(i++)是一种常被新手误以为是原子操作而实际不是的操作。Java中提供了对应的原子操作类来实现该操作,并保证原子性,其本质是利用了CPU级别的CAS指令。由于是CPU级别的指令,其开销比需要操作系统参与的锁的开销小。AtomicInteger使用方法如下。

AtomicInteger atomicInteger = new AtomicInteger();
for(int b = 0; b < numThreads; b++) {
  new Thread(() -> {
    for(int a = 0; a < iteration; a++) {
      atomicInteger.incrementAndGet();
    }
  }).start();
}

Java如何保证可见性

Java提供了volatile关键字来保证可见性。当使用volatile修饰某个变量时,它会保证对该变量的修改会立即被更新到内存中,并且将其它缓存中对该变量的缓存设置成无效,因此其它线程需要读取该值时必须从主内存中读取,从而得到最新的值。

Java如何保证顺序性

上文讲过编译器和处理器对指令进行重新排序时,会保证重新排序后的执行结果和代码顺序执行的结果一致,所以重新排序过程并不会影响单线程程序的执行,却可能影响多线程程序并发执行的正确性。

Java中可通过volatile在一定程序上保证顺序性,另外还可以通过synchronized和锁来保证顺序性。

synchronized和锁保证顺序性的原理和保证原子性一样,都是通过保证同一时间只会有一个线程执行目标代码段来实现的。

除了从应用层面保证目标代码段执行的顺序性外,JVM还通过被称为happens-before原则隐式地保证顺序性。两个操作的执行顺序只要可以通过happens-before推导出来,则JVM会保证其顺序性,反之JVM对其顺序性不作任何保证,可对其进行任意必要的重新排序以获取高效率。

happens-before原则(先行发生原则)

  • 传递规则:如果操作1在操作2前面,而操作2在操作3前面,则操作1肯定会在操作3前发生。该规则说明了happens-before原则具有传递性
  • 锁定规则:一个unlock操作肯定会在后面对同一个锁的lock操作前发生。这个很好理解,锁只有被释放了才会被再次获取
  • volatile变量规则:对一个被volatile修饰的写操作先发生于后面对该变量的读操作
  • 程序次序规则:一个线程内,按照代码顺序执行
  • 线程启动规则:Thread对象的start()方法先发生于此线程的其它动作
  • 线程终结原则:线程的终止检测后发生于线程中其它的所有操作
  • 线程中断规则: 对线程interrupt()方法的调用先发生于对该中断异常的获取
  • 对象终结规则:一个对象构造先于它的finalize发生

volatile适用场景

volatile适用于不需要保证原子性,但却需要保证可见性的场景。一种典型的使用场景是用它修饰用于停止线程的状态标记。如下所示

boolean isRunning = false;

public void start () {
  new Thread( () -> {
    while(isRunning) {
      someOperation();
    }
  }).start();
}

public void stop () {
  isRunning = false;
}

在这种实现方式下,即使其它线程通过调用stop()方法将isRunning设置为false,循环也不一定会立即结束。可以通过volatile关键字,保证while循环及时得到isRunning最新的状态从而及时停止循环,结束线程。

 

线程安全十万个为什么

问:平时项目中使用锁和synchronized比较多,而很少使用volatile,难道就没有保证可见性?
答:锁和synchronized即可以保证原子性,也可以保证可见性。都是通过保证同一时间只有一个线程执行目标代码段来实现的。


问:锁和synchronized为何能保证可见性?
答:根据JDK 7的Java doc中对concurrent包的说明,一个线程的写结果保证对另外线程的读操作可见,只要该写操作可以由happen-before原则推断出在读操作之前发生。

The results of a write by one thread are guaranteed to be visible to a read by another thread only if the write operation happens-before the read operation. The synchronized and volatile constructs, as well as the Thread.start() and Thread.join() methods, can form happens-before relationships.

 

问:既然锁和synchronized即可保证原子性也可保证可见性,为何还需要volatile?
答:synchronized和锁需要通过操作系统来仲裁谁获得锁,开销比较高,而volatile开销小很多。因此在只需要保证可见性的条件下,使用volatile的性能要比使用锁和synchronized高得多。

 

问:既然锁和synchronized可以保证原子性,为什么还需要AtomicInteger这种的类来保证原子操作?
答:锁和synchronized需要通过操作系统来仲裁谁获得锁,开销比较高,而AtomicInteger是通过CPU级的CAS操作来保证原子性,开销比较小。所以使用AtomicInteger的目的还是为了提高性能。

 

问:还有没有别的办法保证线程安全
答:有。尽可能避免引起非线程安全的条件——共享变量。如果能从设计上避免共享变量的使用,即可避免非线程安全的发生,也就无须通过锁或者synchronized以及volatile解决原子性、可见性和顺序性的问题。

 

问:synchronized即可修饰非静态方式,也可修饰静态方法,还可修饰代码块,有何区别
答:synchronized修饰非静态同步方法时,锁住的是当前实例;synchronized修饰静态同步方法时,锁住的是该类的Class对象;synchronized修饰静态代码块时,锁住的是synchronized关键字后面括号内的对象。


代码展示

1、synchronized

synchronized关键字,就是用来控制线程同步的,保证我们的线程在多线程环境下,不被多个线程同时执行,确保我们数据的完整性,使用方法一般是加在方法上。

public class ThreadDemo {

   int count = 0; // 记录方法的命中次数   public synchronized void threadMethod(int j) {

       count++ ;

       int i = 1;

       j = j + i;
   }
}

这样就可以确保我们的线程同步了,同时这里需要注意一个大家平时忽略的问题,首先synchronized锁的是括号里的对象,而不是代码,其次,对于非静态的synchronized方法,锁的是对象本身也就是this。

当synchronized锁住一个对象之后,别的线程如果想要获取锁对象,那么就必须等这个线程执行完释放锁对象之后才可以,否则一直处于等待状态。

注意点:虽然加synchronized关键字,可以让我们的线程变得安全,但是我们在用的时候,也要注意缩小synchronized的使用范围,如果随意使用时很影响程序的性能,别的对象想拿到锁,结果你没用锁还一直把锁占用,这样就有点浪费资源。

 

2、Lock

先来说说它跟synchronized有什么区别吧,Lock是在Java1.6被引入进来的,Lock的引入让锁有了可操作性,什么意思?就是我们在需要的时候去手动的获取锁和释放锁,甚至我们还可以中断获取以及超时获取的同步特性,但是从使用上说Lock明显没有synchronized使用起来方便快捷。我们先来看下一般是如何使用的:

private Lock lock = new ReentrantLock(); // ReentrantLock是Lock的子类   
private void method(Thread thread){
       lock.lock(); // 获取锁对象
       try {
           System.out.println("线程名:"+thread.getName() + "获得了锁");
           // Thread.sleep(2000);
       }catch(Exception e){
           e.printStackTrace();
       } finally {
           System.out.println("线程名:"+thread.getName() + "释放了锁");
           lock.unlock(); // 释放锁对象       }
   }

进入方法我们首先要获取到锁,然后去执行我们业务代码,这里跟synchronized不同的是,Lock获取的所对象需要我们亲自去进行释放,为了防止我们代码出现异常,所以我们的释放锁操作放在finally中,因为finally中的代码无论如何都是会执行的。

写个主方法,开启两个线程测试一下我们的程序是否正常:

public static void main(String[] args) {
       LockTest lockTest = new LockTest();
       // 线程1
       Thread t1 = new Thread(new Runnable() {

           @Override
           public void run() {
               // Thread.currentThread()  返回当前线程的引用
               lockTest.method(Thread.currentThread());
           }
       }, "t1");

       // 线程2
       Thread t2 = new Thread(new Runnable() {

           @Override
           public void run() {
               lockTest.method(Thread.currentThread());
           }
       }, "t2");

       t1.start();
       t2.start();
   }

结果:

5.除了CAS,原子类,syn,Lock还有什么线程安全的方式_第1张图片

可以看出我们的执行,是没有任何问题的。

其实在Lock还有几种获取锁的方式,我们这里再说一种:tryLock()这个方法。

tryLock()这个方法跟Lock()还是有区别的:

Lock在获取锁的时候,如果拿不到锁,就一直处于等待状态,直到拿到锁;

tryLock()却不是这样的,tryLock是有一个Boolean的返回值的,如果没有拿到锁,直接返回false,停止等待,它不会像Lock()那样去一直等待获取锁。

我们来看下代码:

private void method(Thread thread){
       // lock.lock(); // 获取锁对象
       if (lock.tryLock()) {
           try {
               System.out.println("线程名:"+thread.getName() + "获得了锁");
               // Thread.sleep(2000);
           }catch(Exception e){
               e.printStackTrace();
           } finally {
               System.out.println("线程名:"+thread.getName() + "释放了锁");
               lock.unlock(); // 释放锁对象           }
       }
   }

结果:我们继续使用刚才的两个线程进行测试可以发现,在线程t1获取到锁之后,线程t2立马进来,然后发现锁已经被占用,那么这个时候它也不在继续等待。

5.除了CAS,原子类,syn,Lock还有什么线程安全的方式_第2张图片

似乎这种方法,感觉不是很完美,如果我第一个线程,拿到锁的时间,比第二个线程进来的时间还要长,是不是也拿不到锁对象?

那我能不能,用一中方式来控制一下,让后面等待的线程,可以等待5秒,如果5秒之后,还获取不到锁,那么就停止等,其实tryLock()是可以进行设置等待的相应时间的。

private void method(Thread thread) throws InterruptedException {
       // lock.lock(); // 获取锁对象
       // 如果2秒内获取不到锁对象,那就不再等待
       if (lock.tryLock(2,TimeUnit.SECONDS)) {
           try {
               System.out.println("线程名:"+thread.getName() + "获得了锁");

               // 这里睡眠3秒
               Thread.sleep(3000);
           }catch(Exception e){
               e.printStackTrace();
           } finally {
               System.out.println("线程名:"+thread.getName() + "释放了锁");
               lock.unlock(); // 释放锁对象           }
       }
   }

结果:看上面的代码,我们可以发现,虽然我们获取锁对象的时候,可以等待2秒,但是我们线程t1在获取锁对象之后,执行任务缺花费了3秒,那么这个时候线程t2是不在等待的。

5.除了CAS,原子类,syn,Lock还有什么线程安全的方式_第3张图片

我们再来改一下这个等待时间,改为5秒,再来看下结果:

private void method(Thread thread) throws InterruptedException {
       // lock.lock(); // 获取锁对象
       // 如果5秒内获取不到锁对象,那就不再等待
       if (lock.tryLock(5,TimeUnit.SECONDS)) {
           try {
               System.out.println("线程名:"+thread.getName() + "获得了锁");
           }catch(Exception e){
               e.printStackTrace();
           } finally {
               System.out.println("线程名:"+thread.getName() + "释放了锁");
               lock.unlock(); // 释放锁对象           }
       }
   }

结果:这个时候我们可以看到,线程t2等到5秒获取到了锁对象,执行了任务代码。

5.除了CAS,原子类,syn,Lock还有什么线程安全的方式_第4张图片

以上就是使用Lock,来保证我们线程安全的方式。

 

 

 

 

本文转自:https://blog.51cto.com/12253817/2171910

你可能感兴趣的:(java面试题整理)