锁与CAS介绍

转载:http://www.blogjava.net/xylz/archive/2010/07/04/325206.html

             http://www.tuicool.com/articles/zuui6z

 

Java在JDK1.5之前都是靠synchronized关键字保证同步的,这种通过使用一致的锁定协议来协调对共享状态的访问,可以确保无论哪个线程持有守护变量的锁,都采用独占的方式来访问这些变量。

一.锁

1.1.锁机制存在的问题

   (1)在多线程竞争下,加锁、释放锁会导致比较多的上下文切换和调度延时,引起性能问题。而且在上下文切换的时候,cpu之前缓存的指令和数据都将失效,对性能有很大的损失。用户态的锁虽然避免了这些问题,但是其实它们只是在没有真实的竞争时才有效。

   (2)一个线程持有锁会导致其它所有需要此锁的线程挂起直至该锁释放。

   (3)如果一个优先级高的线程等待一个优先级低的线程释放锁会导致导致优先级反转(Priority Inversion),引起性能风险。

1.2.悲观锁与乐观锁

   独占锁是一种悲观锁,synchronized就是一种独占锁,会导致其它所有需要锁的线程挂起,等待持有锁的线程释放锁。而另一个更加有效的锁就是乐观锁。所谓乐观锁就是,每次不加锁而是假设没有冲突而去完成某项操作,如果因为冲突失败就重试,直到成功为止。

 

二.volatile

   与锁相比,volatile变量是一和更轻量级的同步机制,因为在使用这些变量时不会发生上下文切换和线程调度等操作,但是volatile变量也存在一些局限:不能用于构建原子的复合操作,因此当一个变量依赖旧值时就不能使用volatile变量。

   Java中的原子操作( atomic operations),原子操作指的是在一步之内就完成而且不能被中断。原子操作在多线程环境中是线程安全的,无需考虑同步的问题。那么long型赋值不是原子操作呢?实时上java会分两步写入这个long变量,先写32位,再写后32位。这样就线程不安全了。如果改成下面的就线程安全了:

   private volatile long foo;

   因为volatile内部已经做了synchronized.

 

三.CAS无锁算法

   实现无锁(lock-free)的非阻塞算法有多种实现方法,其中 CAS(比较与交换,Compare and swap) 是一种有名的无锁算法。CAS的语义是“我认为V的值应该为A,如果是,那么将V的值更新为B,否则不修改并告诉V的值实际为多少”,CAS是一种 乐观锁 技术,当多个线程尝试使用CAS同时更新同一个变量时,只有其中一个线程能更新变量的值,而其它线程都失败,失败的线程并不会被挂起,而是被告知这次竞争中失败,并可以再次尝试。CAS有3个操作数,内存值V,旧的预期值A,要修改的新值B。当且仅当预期值A和内存值V相同时,将内存值V修改为B,否则什么都不做。

   CAS是以原子操作为基础,采用事务->提交->提交失败->重试这样特定编程手法的机制,它使得正在访问共享资源的线程不依赖于任何其它线程的调度和执行,并且能够在有限的步骤内完成。

   一个线程的失败或者挂起不应该影响其他线程的失败或挂起的算法。现代的CPU提供了特殊的指令,可以自动更新共享数据,而且能够检测到其他线程的干扰,而 compareAndSet() 就用这些代替了锁定。

   拿出AtomicInteger来研究在没有锁的情况下是如何做到数据正确性的。

      private volatile int value;

   首先毫无疑问,在没有锁的机制下可能需要借助volatile原语,保证线程间的数据是可见的(共享的)。这样才获取变量的值的时候才能直接读取。

      public final int get() {
         return value;
      }

   然后来看看++i是怎么做到的。

      public final int incrementAndGet() {
         for (;;) {

            int current = get();

            int next = current + 1;

            if (compareAndSet(current, next))

                return next;

         }

      }

   在这里采用了CAS操作,每次从内存中读取数据然后将此数据和+1后的结果进行CAS操作,如果成功就返回结果,否则重试直到成功为止。而compareAndSet利用JNI来完成CPU指令的操作。

   public final boolean compareAndSet(int expect, int update) { 

       return unsafe.compareAndSwapInt(this, valueOffset, expect, update);

   }

   整体的过程就是这样子的,利用CPU的CAS指令,同时借助JNI来完成Java的非阻塞算法。其它原子操作都是利用类似的特性完成的。而整个J.U.C都是建立在CAS之上的,因此对于synchronized阻塞算法,J.U.C在性能上有了很大的提升。

   CAS看起来很爽,但是会导致“ABA问题”。CAS算法实现一个重要前提需要取出内存中某时刻的数据,而在下时刻比较并替换,那么在这个时间差类会导致数据的变化。比如说一个线程one从内存位置V中取出A,这时候另一个线程two也从内存中取出A,并且two进行了一些操作变成了B,然后two又将V位置的数据变成A,这时候线程one进行CAS操作发现内存中仍然是A,然后one操作成功。尽管线程one的CAS操作成功,但是不代表这个过程就是没有问题的。如果链表的头在变化了两次后恢复了原值,但是不代表链表就没有变化。因此前面提到的原子操作AtomicStampedReference/AtomicMarkableReference就很有用了。这允许一对变化的元素进行原子操作。

四.JVM对CAS的支持

   AtomicInt, AtomicLong.incrementAndGet()

   在JDK1.5之前,如果不编写明确的代码就无法执行CAS操作,在JDK1.5中引入了底层的支持,在int、long和对象的引用等类型上都公开了CAS的操作,并且JVM把它们编译为底层硬件提供的最有效的方法,在运行CAS的平台上,运行时把它们编译为相应的机器指令,如果处理器/CPU不支持CAS指令,那么JVM将使用自旋锁。

   在原子类变量中,如java.util.concurrent.atomic中的AtomicXXX,都使用了这些底层的JVM支持为数字类型的引用类型提供一种高效的CAS操作,而在java.util.concurrent中的大多数类在实现时都直接或间接的使用了这些原子变量类。


五.高并发环境下优化锁或无锁(lock-free)的设计思路

   高并发环境下要实现高吞吐量和线程安全,两个思路:

   一个是用优化的锁实现,

   一个是lock-free的无锁结构。

   但非阻塞算法要比基于锁的算法复杂得多。开发非阻塞算法是相当专业的训练,而且要证明算法的正确也极为困难,不仅和具体的目标机器平台和编译器相关,而且需要复杂的技巧和严格的测试。虽然Lock-Free编程非常困难,但是它通常可以带来比基于锁编程更高的吞吐量。所以Lock-Free编程是大有前途的技术。它在线程中止、优先级反转以及信号安全等方面都有着良好的表现。

  •  优化锁实现的例子 :Java中的ConcurrentHashMap,设计巧妙,用桶粒度的锁和锁分离机制,避免了put和get中对整个map的锁定,尤其在get中,只对一个HashEntry做锁定操作,性能提升是显而易见的。
  • Lock-free无锁的例子 :CAS(Compare-And-Swap)的利用和LMAX的disruptor 无锁消息队列数据结构等。例如ConcurrentLinkedQueue。

你可能感兴趣的:(#,【同步/锁/volatile】)