- 数仓_数据口径
TTXS123456789ABC
#XM1离线数仓_金融零售大数据
数仓_数据口径数据口径含义数据口径包含口径收敛数据口径含义在数据仓库(数仓)中,数据口径是指在数据统计和分析过程中,对数据的定义、计算方法、范围和标准等方面的详细规定。它确保了数据的一致性和准确性,避免因统计标准不一致导致的数据误解和混淆。数据口径包含具体来说,数据口径包括以下几个方面:数据定义:明确指标的具体含义。例如,“用户注册数”指的是在某一定时间内通过平台注册的新用户数量。计算方法:规定如
- 【AI中的数学-人工智能的数学基石】AI的心脏:探索人工智能的算法与核心技术
云博士的AI课堂
AI中的数学人工智能算法数学AI数学大模型
第一章人工智能的数学基石第二节AI的心脏:探索人工智能的算法与核心技术人工智能(AI)的迅猛发展离不开其背后的复杂算法与核心技术。这些算法不仅决定了AI系统的性能和能力,也构成了AI应用的基础。从基础的机器学习算法到先进的深度学习模型,AI的算法生态系统丰富多样,涵盖了广泛的数学原理和计算方法。本节将深入探讨驱动AI进步的关键算法与技术,揭示其工作机制及在实际应用中的重要性。一、机器学习:智能的基
- Bash 中的运算方式
躺不平的理查德
#bash开发语言
目录概述:1.(())运算符2.let命令3.expr命令4.$[]直接运算5.bc(计算器,支持浮点数)6.awk(强大的文本处理工具,也可计算)概述:Bash本身只支持整数运算,但可以结合bc和awk进行浮点运算。以下是常见的计算方法:1.(())运算符(())是Bash的整数计算语法,支持算术运算符、逻辑运算符,并且可以直接操作变量。echo$((2+3))#输出5echo$((10/3))
- 初阶c语言(循环语句习题,完结)
不灭锦鲤
c语言算法数据结构
前言:c语言为b站鹏哥,嗯对应视频37集昨天做的c语言,今天在来做一遍,发现做错了今天改了平均值的计算,就是说最大值加上最小值,如果说这个数值非常大的话,两个值加上会超过int类型的最大值,从而导致数值的重新计算,导致结果不稳定,所以换一种计算方法第二题,折半查找法环境介绍,就是devc++软件运行编译就是说最大值减去最小值,然后中间有个差值,将他分成一半给最小值,那两个就都是平均值了#inclu
- 【GreatSQL优化器-04】贪婪搜索算法浅析
数据库mysql
【GreatSQL优化器-04】贪婪搜索算法浅析一、贪婪搜索(greedy_search)介绍GreatSQL的优化器用greedy_search方法来枚举所有的表连接场景,然后从中根据最小cost来决定最佳连接顺序。这里面就涉及每种场景的cost计算方法,不同计算方法会导致不同的排序结果。因为枚举所有join场景,当表数量很大的时候就有可能无穷无尽消耗系统资源,因此GreatSQL执行greed
- 我国化学信息学研究的地位与近期研究进展
xoaxo
算法优化生物数据库网络工作
近两年来,我国的化学信息学研究得到了快速发展,在某些专题的研究方面达到了国际前沿水平。在理论与计算化学研究中,基于第一性原理的新型并行计算方法被提出并用于纳米材料电子结构的高效计算[24],轨道分解方法被用来简化磁性质的四分量相对论计算[25]。同时,量化计算被越来越多地应用于团簇优化[26]及材料性质的预测[27],并越来越注重与实际结合用于反应过程过渡态和催化机理研究[28]。此外,密度泛函理
- 模糊模式识别:从贴近度到分类决策的Matlab实践
青橘MATLAB学习
模糊数学模型分类matlab数据分析数学建模
模糊模式识别是模糊数学在现实问题中的核心应用之一,其核心思想是通过量化模糊集合之间的“相似性”或“贴近度”,实现对未知模式的分类与识别。本文将从贴近度的定义出发,详解海明贴近度、欧几里得贴近度、黎曼贴近度及格贴近度的计算方法,并结合最大隶属原则与择近原则,解析模糊模式识别的完整流程。一、贴近度的定义与分类1.1贴近度的数学定义贴近度(ProximityDegree)是衡量两个模糊集合相似性的指标。
- Sora如何颠覆20个商业场景?Sora模型的商业应用及成本效益分析
大F的智能小课
玩转大模型人工智能
Sora模型简介Sora模型,作为一种先进的长视频生成模型,具有广泛的应用潜力。以下是Sora模型可能的20个商业场景应用,包括每个场景在Sora模型未发布时的普遍做法、Sora模型发布之后的改变以及节省成本的维度分析。节省成本的说明节省成本的说明:节省成本的计算是基于几个关键因素,包括时间、人力、设备和材料成本。以下是具体计算方法的一个概述:时间成本:使用Sora模型可以显著减少视频制作的时间。
- R中单细胞RNA-seq分析教程 (6)
后端
引言本系列开启R中单细胞RNA-seq数据分析教程,持续更新,欢迎关注,转发!简介现在,很少有人只进行一次单细胞RNA测序实验并仅产生一份数据。原因很直接:目前的单细胞RNA测序技术每次只能捕捉到有限样本的分子状态。为了在多个实验和不同条件下对众多样本进行测量,通常需要对来自不同实验的单细胞RNA测序数据进行联合分析。虽然有些实验策略,比如细胞哈希!,以及一些计算方法,比如demuxlet和scS
- 电子放大倍率计算方法
Carlos_Ni
计算机视觉相机
电子放大倍率,即显示器的放大率,显示器对你图像的放大倍率简单点想就是,显示器的单显示点实际尺寸:477mm/1920=a;相机采集图像本身单像素代表尺寸:17.2mm/2700=b显示放大倍率:a/b当然要算整体相对物方实物的放大倍率还要*本身镜头的放大倍率c比如照片上17.2mm的元器件所占像素为2700,照片解析度就是17.2/2700≈6.37μm/pix。显示器为1920*1080,21寸
- Day36【AI思考】-表达式知识体系总览
一个一定要撑住的学习者
#AI深度思考学习方法数据库
文章目录**表达式知识体系总览**回答1:**表达式知识体系****一、三种表达式形式对比****二、表达式转换核心方法****1.中缀转后缀(重点)****2.中缀转前缀****三、表达式计算方法****1.后缀表达式计算(栈实现)****2.中缀表达式计算(双栈法)**回答2:**终极生活类比(3秒懂核心)****灵魂三问(人类本能验证法)****手动转换术(不背算法,用自然思维)****脑内
- 机器学习数学基础:11.行列式的多种计算方法
@心都
机器学习数学基础机器学习线性代数人工智能
行列式的多种计算方法行(列)相等型对于行列式∣1+a11122+a22333+a34444+a∣\begin{vmatrix}1+a&1&1&1\\2&2+a&2&2\\3&3&3+a&3\\4&4&4&4+a\end{vmatrix}1+a23412+a34123+a41234+a,通过将第一行元素都变为10+a10+a10+a,得到∣10+a10+a10+a10+a22+a22333+a344
- 4.4 Qt Graphics 场景中的二维空间变换
Fighting Horse
Qt框架性开发实践qt
本文是《用Qt实现电子白板》的其中一节,建议全章阅读。场景中的二维空间变换是针对控件的平移、缩放、旋转变换。在上一级我们介绍过场景中的交互逻辑,其中一大块就是操作空间变换,那些是空间变换的输入。另外,我们在《场景视图中二维空间变换矩阵的计算》中介绍了变换矩阵的计算方法。本文的重点在于对二维变换的管理。二维空间变换API在QtGraphics中,二维变换相关的api有(QGraphicsItem):
- 开放寻址法
小海螺123
算法
开放寻址法开放寻址法的装载因子开放寻址法插入关键字查找关键字删除关键字开放寻址法探查序列的计算方法开放寻址法的装载因子 给定一个能存放n个元素的、具有m个槽位的哈希表T,采用开放寻址法时T的装载因子为:α=n/m,n≤m\alpha=n/m,n\leqmα=n/m,n≤m开放寻址法 解决哈希表(在一些文献中又称作散列表)冲突的方法有:链接法(chaining)和开放寻址法(openaddres
- 100.3 AI量化面试题:解释配对交易(Pairs Trading)的原理,并说明如何选择配对股票以及设计交易信号
AI量金术师
金融资产组合模型进化论人工智能金融机器学习python算法数学建模面试
目录0.承前1.配对交易基本原理1.1什么是配对交易1.2基本假设2.配对选择方法2.1相关性分析2.2协整性检验3.价差计算方法3.1简单价格比率3.2回归系数法4.交易信号设计4.1标准差方法4.2动态阈值方法5.风险管理5.1止损设计5.2仓位管理6.策略评估6.1回测框架6.2性能指标7.回答话术0.承前如果想更加全面清晰地了解金融资产组合模型进化论的体系架构,可参考:0.金融资产组合模型
- 100.1 AI量化面试题:解释夏普比率(Sharpe Ratio)的计算方法及其在投资组合管理中的应用,并说明其局限性
AI量金术师
金融资产组合模型进化论人工智能金融python机器学习大数据
目录0.承前1.夏普比率的基本概念1.1定义与计算方法1.2实际计算示例2.在投资组合管理中的应用2.1投资组合选择2.2投资组合优化3.夏普比率的局限性3.1统计假设的限制3.2实践中的问题4.改进方案4.1替代指标4.2实践建议5.回答话术0.承前如果想更加全面清晰地了解金融资产组合模型进化论的体系架构,可参考:0.金融资产组合模型进化全图鉴1.夏普比率的基本概念1.1定义与计算方法夏普比率是
- 【机器学习与数据挖掘实战】案例11:基于灰色预测和SVR的企业所得税预测分析
Francek Chen
机器学习与数据挖掘实战机器学习数据挖掘灰色预测SVR人工智能
【作者主页】FrancekChen【专栏介绍】⌈⌈⌈机器学习与数据挖掘实战⌋⌋⌋机器学习是人工智能的一个分支,专注于让计算机系统通过数据学习和改进。它利用统计和计算方法,使模型能够从数据中自动提取特征并做出预测或决策。数据挖掘则是从大型数据集中发现模式、关联和异常的过程,旨在提取有价值的信息和知识。机器学习为数据挖掘提供了强大的分析工具,而数据挖掘则是机器学习应用的重要领域,两者相辅相成,共同推动
- matlab——计算VPD(vapor pressure defict)
小琳子要开心呀
MATLABVPD计算饱和水汽压Goff-Gratch公式matlab
需求:计算VPD(vaporpressuredefict)。介绍:饱和水汽压差(简称VPD)是指在一定温度下,饱和水汽压与空气中的实际水汽压之间的差值(百度百科)。因此,温室中VPD的理想范围是0.45kPa至1.25kPa,理想情况下约为0.85kPa。通常,大多数植物在VPD在0.8到0.95kPa之间时生长良好(维基百科)。计算方法:一、先计算饱和水汽压二、饱和水汽压减去实际水汽压。世界气象
- Flink流式计算入门
@Rocky
Flinkflink大数据
什么是流式计算流式计算是一种实时处理和分析大规模数据流的计算方法,其核心思想是将数据视为连续流动的序列,而不是静态存储的数据。与传统的批处理计算不同,流式计算能够在数据生成的同时进行处理,提供及时的结果。核心概念数据流:流式计算中的基本单位,表示一系列动态生成的数据。数据流可以来自传感器、网络请求、用户行为等多种来源。计算流:在数据流上进行的各种计算操作,如过滤、聚合和转换等。这些操作实时进行,并
- SAP关于成本的概念-差异的计算方法-实际成本计算方法
saplakes
#SAP_FICOSAP实际成本FICOCO管理会计生产订单
一、成本的概念标准成本=标准价格*标准数量+作业价格*标准数量计划成本=计划价格*计划数量+作业价格*计划数量实际成本=实际价格*实际数量+作业价格*实际数量目标成本=标准价格*实际数量+作业价格*实际数量注意在SAP中目标成本,是根据生产订单中产品成本评估时的价格,乘以生产订单完工入库量,乘以BOM用量的结果。计划成本,为生产订单计划生产量,乘BOM用量,乘计划生产变式中定义的价格。计划成本,即
- Java 实现度量地理分布标准距离的多种方法
老师来上课了
算法java开发语言
目录一、Java度量地理距离的需求与重要性二、常用的地理距离计算方法(一)Haversine公式计算法(二)利用高德地理信息API(三)RedisGEO测算法(四)JavaGeo库计算法(五)利用地图工具计算法三、总结一、Java度量地理距离的需求与重要性在日常的软件开发中,根据地理点位坐标计算距离的需求广泛存在于多个领域。例如,在物流管理系统中,需要准确计算货物运输的起点与终点之间的距离,以便合
- matlab阿卡曼公式,阿克曼函数--一个计算方法
手机队长
matlab阿卡曼公式
在数学上有一个著名的“阿克曼函数”,它是二元函数,其定义式为:(1)ACK(0,N)=1+N(2)ACK(M,0)=ACK(M-1,1)(M>0)(3)ACK(M,N)=ACK(M-1,ACK(M,N-1))(M>0,N>0)试用手工求解ACK(3,7)的值。因为这个函数是用递归方式定义的,如果使用递归算法编程求解并不困难。但是,要解这个具体问题,还必须经过将近70万次(693964次)递归调用!
- 差分轮算法-两个轮子计算速度的方法-阿克曼四轮小车计算方法
鼾声鼾语
仅仅我可见算法angular.jsjavascript单片机
四轮驱小车的话:转向角度计算方法:floatturning_angle=z_angular/x_linear;//转向角度,单位为弧度速度的话直接用线速度两轮驱动小车:计算公式:leftSpeed=x_linear-z_angular*ORIGINBOT_WHEEL_TRACK/2.0;#左轮速度rightSpeed=x_linear+z_angular*ORIGINBOT_WHEEL_TRACK
- DeepMind的新突破:GenCast
新加坡内哥谈技术
人工智能大数据语言模型
每周跟踪AI热点新闻动向和震撼发展想要探索生成式人工智能的前沿进展吗?订阅我们的简报,深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同,从行业内部的深度分析和实用指南中受益。不要错过这个机会,成为AI领域的领跑者。点击订阅,与未来同行!订阅:https://rengongzhineng.io/如今,人工智能(AI)在天气预报领域的表现已经可以与传统计算方法媲美。然而,AI模型的训
- 顺序表、链式表、顺序栈、链式栈以及顺序队列、链式队列
¿134
数据结构算法c语言
一、什么是数据结构1、数据结构的起源1968,美国高德纳教授,《计算机程序设计艺术》第一卷《基本算法》,开创了数据结构和算法的先河数据结构是研究数据之间关系和操作的学科,而非计算方法数据结构+算法=程序美国沃斯提出这句话揭示了程序的本质2、数据结构相关概念结构:所以能够输入到计算机中,能够被程序处理的描述客观事物的符号数据项:有独立含义的数据的最小单位,也称为域数据元素:组成数据的有一定含义的基本
- 在MATLAB中,梯度gradient计算方法的理解
qq_43272922
matlab算法人工智能
以矩阵为例:[FX,FY]=gradient(F)在MATLAT中,grandient函数计算方法:1)FX方向(或行向量):(1)第1列=第2列-第1列(2)中间第j列=(第j+1列-第j-1列)/2(3)第n列=第n列-第n-1列。2)FY方向(或列向量):(1)第1行=第2行-第1行(2)中间第i行=(第i+1行-第i-1行)/2(3)第m行=第m行-
- 备战2025美赛数学建模,蒙特卡洛模拟算法,2025美赛数学建模A题+B题+C题+D题+E题思路+模型+代码(1.24第一时间更新,)
灿灿数模
人工智能
备战2025美赛数学建模,蒙特卡洛模拟算法,2025美赛数学建模A题+B题+C题+D题+E题思路+模型+代码(1.24第一时间更新,)更新见文末名片一、引言蒙特卡洛模拟算法是一种基于概率和统计理论的数值计算方法,通过随机抽样来近似复杂系统的概率问题。它以摩纳哥著名的赌场蒙特卡洛命名,象征着其基于随机性的特点。二、算法原理蒙特卡洛模拟算法的核心思想是利用随机抽样来估计一个函数的期望值或者某个概率分布
- python分段线性插值_计算方法(3)——分段插值法(附Python程序)
weixin_39900206
python分段线性插值
在上一节计算方法(2)——插值法(附Python程序)当中,主要讲了插值法,介绍了龙格现象,并给出了插值法的代码。这一讲主要分段插值中的分段线性插值和分段Hermite插值,并给出分段插值的Python程序。在此之前需要注意一下,n为区间数,n+1为插值节点的个数。分段线性插值分段线性插值,需要两个列表,一个用于存放各点的x坐标,一个用于存放各点的y坐标。因为分段插值的算法需要x坐标按顺序增长,而
- Ansys Fluent流体仿真计算分析、硬件配置分析
深度学习服务器
深度学习服务器python算法caffe
AnsysFluent流体仿真计算分析、算法及硬件配置AnsysFluent是目前国际上比较流行的商用CFD(ComputationalFluidDynamics,计算流体力学)软件包求解器,在美国的市场占有率为60%。与流体、热传递和化学反应等有关的行业均可使用它。它具有丰富的物理模型、先进的数值计算方法和强大的前后处理功能,在航空航天、汽车设计、石油、天然气、涡轮机设计等方面都有着广泛的应用。
- PLUTO:突破基于模仿学习的自动驾驶规划极限
硅谷秋水
机器学习自动驾驶人工智能自动驾驶人工智能机器学习计算机视觉
24年4月来自香港科技大学的论文“PLUTO:PushingtheLimitofImitationLearning-basedPlanningforAutonomousDriving”。PLUTO,突破基于模仿学习的自动驾驶规划极限。改进来自三个关键方面:一种纵向横向感知模型架构,可实现灵活多样的驾驶行为;一种创新的辅助损失计算方法,可广泛应用且可高效地进行批量计算;一种利用对比学习的训练框架,采
- knob UI插件使用
换个号韩国红果果
JavaScriptjsonpknob
图形是用canvas绘制的
js代码
var paras = {
max:800,
min:100,
skin:'tron',//button type
thickness:.3,//button width
width:'200',//define canvas width.,canvas height
displayInput:'tr
- Android+Jquery Mobile学习系列(5)-SQLite数据库
白糖_
JQuery Mobile
目录导航
SQLite是轻量级的、嵌入式的、关系型数据库,目前已经在iPhone、Android等手机系统中使用,SQLite可移植性好,很容易使用,很小,高效而且可靠。
因为Android已经集成了SQLite,所以开发人员无需引入任何JAR包,而且Android也针对SQLite封装了专属的API,调用起来非常快捷方便。
我也是第一次接触S
- impala-2.1.2-CDH5.3.2
dayutianfei
impala
最近在整理impala编译的东西,简单记录几个要点:
根据官网的信息(https://github.com/cloudera/Impala/wiki/How-to-build-Impala):
1. 首次编译impala,推荐使用命令:
${IMPALA_HOME}/buildall.sh -skiptests -build_shared_libs -format
2.仅编译BE
${I
- 求二进制数中1的个数
周凡杨
java算法二进制
解法一:
对于一个正整数如果是偶数,该数的二进制数的最后一位是 0 ,反之若是奇数,则该数的二进制数的最后一位是 1 。因此,可以考虑利用位移、判断奇偶来实现。
public int bitCount(int x){
int count = 0;
while(x!=0){
if(x%2!=0){ /
- spring中hibernate及事务配置
g21121
Hibernate
hibernate的sessionFactory配置:
<!-- hibernate sessionFactory配置 -->
<bean id="sessionFactory"
class="org.springframework.orm.hibernate3.LocalSessionFactoryBean">
<
- log4j.properties 使用
510888780
log4j
log4j.properties 使用
一.参数意义说明
输出级别的种类
ERROR、WARN、INFO、DEBUG
ERROR 为严重错误 主要是程序的错误
WARN 为一般警告,比如session丢失
INFO 为一般要显示的信息,比如登录登出
DEBUG 为程序的调试信息
配置日志信息输出目的地
log4j.appender.appenderName = fully.qua
- Spring mvc-jfreeChart柱图(2)
布衣凌宇
jfreechart
上一篇中生成的图是静态的,这篇将按条件进行搜索,并统计成图表,左面为统计图,右面显示搜索出的结果。
第一步:导包
第二步;配置web.xml(上一篇有代码)
建BarRenderer类用于柱子颜色
import java.awt.Color;
import java.awt.Paint;
import org.jfree.chart.renderer.category.BarR
- 我的spring学习笔记14-容器扩展点之PropertyPlaceholderConfigurer
aijuans
Spring3
PropertyPlaceholderConfigurer是个bean工厂后置处理器的实现,也就是BeanFactoryPostProcessor接口的一个实现。关于BeanFactoryPostProcessor和BeanPostProcessor类似。我会在其他地方介绍。
PropertyPlaceholderConfigurer可以将上下文(配置文件)中的属性值放在另一个单独的标准java
- maven 之 cobertura 简单使用
antlove
maventestunitcoberturareport
1. 创建一个maven项目
2. 创建com.CoberturaStart.java
package com;
public class CoberturaStart {
public void helloEveryone(){
System.out.println("=================================================
- 程序的执行顺序
百合不是茶
JAVA执行顺序
刚在看java核心技术时发现对java的执行顺序不是很明白了,百度一下也没有找到适合自己的资料,所以就简单的回顾一下吧
代码如下;
经典的程序执行面试题
//关于程序执行的顺序
//例如:
//定义一个基类
public class A(){
public A(
- 设置session失效的几种方法
bijian1013
web.xmlsession失效监听器
在系统登录后,都会设置一个当前session失效的时间,以确保在用户长时间不与服务器交互,自动退出登录,销毁session。具体设置很简单,方法有三种:(1)在主页面或者公共页面中加入:session.setMaxInactiveInterval(900);参数900单位是秒,即在没有活动15分钟后,session将失效。这里要注意这个session设置的时间是根据服务器来计算的,而不是客户端。所
- java jvm常用命令工具
bijian1013
javajvm
一.概述
程序运行中经常会遇到各种问题,定位问题时通常需要综合各种信息,如系统日志、堆dump文件、线程dump文件、GC日志等。通过虚拟机监控和诊断工具可以帮忙我们快速获取、分析需要的数据,进而提高问题解决速度。 本文将介绍虚拟机常用监控和问题诊断命令工具的使用方法,主要包含以下工具:
&nbs
- 【Spring框架一】Spring常用注解之Autowired和Resource注解
bit1129
Spring常用注解
Spring自从2.0引入注解的方式取代XML配置的方式来做IOC之后,对Spring一些常用注解的含义行为一直处于比较模糊的状态,写几篇总结下Spring常用的注解。本篇包含的注解有如下几个:
Autowired
Resource
Component
Service
Controller
Transactional
根据它们的功能、目的,可以分为三组,Autow
- mysql 操作遇到safe update mode问题
bitray
update
我并不知道出现这个问题的实际原理,只是通过其他朋友的博客,文章得知的一个解决方案,目前先记录一个解决方法,未来要是真了解以后,还会继续补全.
在mysql5中有一个safe update mode,这个模式让sql操作更加安全,据说要求有where条件,防止全表更新操作.如果必须要进行全表操作,我们可以执行
SET
- nginx_perl试用
ronin47
nginx_perl试用
因为空闲时间比较多,所以在CPAN上乱翻,看到了nginx_perl这个项目(原名Nginx::Engine),现在托管在github.com上。地址见:https://github.com/zzzcpan/nginx-perl
这个模块的目的,是在nginx内置官方perl模块的基础上,实现一系列异步非阻塞的api。用connector/writer/reader完成类似proxy的功能(这里
- java-63-在字符串中删除特定的字符
bylijinnan
java
public class DeleteSpecificChars {
/**
* Q 63 在字符串中删除特定的字符
* 输入两个字符串,从第一字符串中删除第二个字符串中所有的字符。
* 例如,输入”They are students.”和”aeiou”,则删除之后的第一个字符串变成”Thy r stdnts.”
*/
public static voi
- EffectiveJava--创建和销毁对象
ccii
创建和销毁对象
本章内容:
1. 考虑用静态工厂方法代替构造器
2. 遇到多个构造器参数时要考虑用构建器(Builder模式)
3. 用私有构造器或者枚举类型强化Singleton属性
4. 通过私有构造器强化不可实例化的能力
5. 避免创建不必要的对象
6. 消除过期的对象引用
7. 避免使用终结方法
1. 考虑用静态工厂方法代替构造器
类可以通过
- [宇宙时代]四边形理论与光速飞行
comsci
从四边形理论来推论 为什么光子飞船必须获得星光信号才能够进行光速飞行?
一组星体组成星座 向空间辐射一组由复杂星光信号组成的辐射频带,按照四边形-频率假说 一组频率就代表一个时空的入口
那么这种由星光信号组成的辐射频带就代表由这些星体所控制的时空通道,该时空通道在三维空间的投影是一
- ubuntu server下python脚本迁移数据
cywhoyi
pythonKettlepymysqlcx_Oracleubuntu server
因为是在Ubuntu下,所以安装python、pip、pymysql等都极其方便,sudo apt-get install pymysql,
但是在安装cx_Oracle(连接oracle的模块)出现许多问题,查阅相关资料,发现这边文章能够帮我解决,希望大家少走点弯路。http://www.tbdazhe.com/archives/602
1.安装python
2.安装pip、pymysql
- Ajax正确但是请求不到值解决方案
dashuaifu
Ajaxasync
Ajax正确但是请求不到值解决方案
解决方案:1 . async: false , 2. 设置延时执行js里的ajax或者延时后台java方法!!!!!!!
例如:
$.ajax({ &
- windows安装配置php+memcached
dcj3sjt126com
PHPInstallmemcache
Windows下Memcached的安装配置方法
1、将第一个包解压放某个盘下面,比如在c:\memcached。
2、在终端(也即cmd命令界面)下输入 'c:\memcached\memcached.exe -d install' 安装。
3、再输入: 'c:\memcached\memcached.exe -d start' 启动。(需要注意的: 以后memcached将作为windo
- iOS开发学习路径的一些建议
dcj3sjt126com
ios
iOS论坛里有朋友要求回答帖子,帖子的标题是: 想学IOS开发高阶一点的东西,从何开始,然后我吧啦吧啦回答写了很多。既然敲了那么多字,我就把我写的回复也贴到博客里来分享,希望能对大家有帮助。欢迎大家也到帖子里讨论和分享,地址:http://bbs.csdn.net/topics/390920759
下面是我回复的内容:
结合自己情况聊下iOS学习建议,
- Javascript闭包概念
fanfanlovey
JavaScript闭包
1.参考资料
http://www.jb51.net/article/24101.htm
http://blog.csdn.net/yn49782026/article/details/8549462
2.内容概述
要理解闭包,首先需要理解变量作用域问题
内部函数可以饮用外面全局变量
var n=999;
functio
- yum安装mysql5.6
haisheng
mysql
1、安装http://dev.mysql.com/get/mysql-community-release-el7-5.noarch.rpm
2、yum install mysql
3、yum install mysql-server
4、vi /etc/my.cnf 添加character_set_server=utf8
- po/bo/vo/dao/pojo的详介
IT_zhlp80
javaBOVODAOPOJOpo
JAVA几种对象的解释
PO:persistant object持久对象,可以看成是与数据库中的表相映射的java对象。最简单的PO就是对应数据库中某个表中的一条记录,多个记录可以用PO的集合。PO中应该不包含任何对数据库的操作.
VO:value object值对象。通常用于业务层之间的数据传递,和PO一样也是仅仅包含数据而已。但应是抽象出的业务对象,可
- java设计模式
kerryg
java设计模式
设计模式的分类:
一、 设计模式总体分为三大类:
1、创建型模式(5种):工厂方法模式,抽象工厂模式,单例模式,建造者模式,原型模式。
2、结构型模式(7种):适配器模式,装饰器模式,代理模式,外观模式,桥接模式,组合模式,享元模式。
3、行为型模式(11种):策略模式,模版方法模式,观察者模式,迭代子模式,责任链模式,命令模式,备忘录模式,状态模式,访问者
- [1]CXF3.1整合Spring开发webservice——helloworld篇
木头.java
springwebserviceCXF
Spring 版本3.2.10
CXF 版本3.1.1
项目采用MAVEN组织依赖jar
我这里是有parent的pom,为了简洁明了,我直接把所有的依赖都列一起了,所以都没version,反正上面已经写了版本
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="ht
- Google 工程师亲授:菜鸟开发者一定要投资的十大目标
qindongliang1922
工作感悟人生
身为软件开发者,有什么是一定得投资的? Google 软件工程师 Emanuel Saringan 整理了十项他认为必要的投资,第一项就是身体健康,英文与数学也都是必备能力吗?来看看他怎么说。(以下文字以作者第一人称撰写)) 你的健康 无疑地,软件开发者是世界上最久坐不动的职业之一。 每天连坐八到十六小时,休息时间只有一点点,绝对会让你的鲔鱼肚肆无忌惮的生长。肥胖容易扩大罹患其他疾病的风险,
- linux打开最大文件数量1,048,576
tianzhihehe
clinux
File descriptors are represented by the C int type. Not using a special type is often considered odd, but is, historically, the Unix way. Each Linux process has a maximum number of files th
- java语言中PO、VO、DAO、BO、POJO几种对象的解释
衞酆夼
javaVOBOPOJOpo
PO:persistant object持久对象
最形象的理解就是一个PO就是数据库中的一条记录。好处是可以把一条记录作为一个对象处理,可以方便的转为其它对象。可以看成是与数据库中的表相映射的java对象。最简单的PO就是对应数据库中某个表中的一条记录,多个记录可以用PO的集合。PO中应该不包含任何对数据库的操作。
BO:business object业务对象
封装业务逻辑的java对象