PyTorch构建网络示例:LeNet-5

采用PyTorch构建网络,主要需要定义网络结构(Net)和定义前向传播函数(forward)。
以LeNet-5为例,网络图和代码如下:
PyTorch构建网络示例:LeNet-5_第1张图片

import torch
from torch import nn
import torch.nn.functional as F
from torchvision import datasets, transforms
import torch.utils.data as Data
import torch.optim as optim
from matplotlib import pyplot as plt
import numpy as np
import os
if not os.path.exists('./models/'):#保存模型文件
    os.mkdir('./models/')

class lenet5(nn.Module):
    def __init__(self):
        super(lenet5,self).__init__()
        self.conv1 = nn.Conv2d(in_channels=1, out_channels=6, kernel_size=5, stride=1, padding=0, dilation=1, groups=1, bias=True, padding_mode='zeros')
        self.pool1 = nn.AvgPool2d(kernel_size=2, stride=None, padding=0, ceil_mode=False, count_include_pad=True, divisor_override=None)
        self.conv2 = nn.Conv2d(6,16,5,1)
        self.pool2 = nn.AvgPool2d(2)
        self.fc1 = nn.Linear(4*4*16,120)#注:按原始的minst数据集,输入为图示中的32*32时,此处应该是5*5*16.但是按torchvision.datasets中的输入大小则是28*28,此处为4*4*16。或者直接在Data.DataLoader时将输入transforms到32*32大小
        self.fc2 = nn.Linear(120,84)
        self.out = nn.Linear(84,10)
        
    def forward(self, x):
        x = self.pool1(F.relu(self.conv1(x)))
        x = self.pool2(F.relu(self.conv2(x)))
        x = x.view(x.shape[0], -1)#flatten the output of pool2 to (batch_size, 16 * 4 * 4),x.shape[0]为batch_size,-1为自适应调整大小
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        x = F.softmax(self.out(x),dim=-1)
        return x
    
net = lenet5()
print(net)#打印网络结构
#load dataset
BATCH_SIZE = 256
transformImg = transforms.ToTensor()#此处还可以调整输入图的大小
train_dataset = datasets.MNIST(root="./datasets/", train=True, transform=transformImg, download=True)
test_dataset = datasets.MNIST(root="./datasets/",train=False, transform=transformImg)

train_loader = Data.DataLoader(dataset=train_dataset,batch_size = BATCH_SIZE,shuffle=True, num_workers=8)
test_loader = Data.DataLoader(dataset=test_dataset,batch_size=BATCH_SIZE,shuffle=False, num_workers=8)

loss = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(),lr=0.1)
num_epochs = 100
loss_list = []

for epoch in range(num_epochs):
    for i, (X, label) in enumerate(train_loader):
        y = net(X)
        loss_value = loss(y, label)
        optimizer.zero_grad()
        loss_value.backward()
        optimizer.step()
    print("iter: ", epoch, ", loss: ", loss_value)
    loss_list.append([epoch, loss_value])

    correct = 0
    _sum = 0

    for idx, (test_x, test_label) in enumerate(test_loader):
        predict_y = net(test_x.float()).detach()
        predict_ys = np.argmax(predict_y, axis=-1)
        label_np = test_label.numpy()
        _ = predict_ys == test_label
        correct += np.sum(_.numpy(), axis=-1)
        _sum += _.shape[0]

    print('accuracy: {:.2f}'.format(correct / _sum))
    torch.save(net, './models/mnist_{:.2f}.pkl'.format(correct / _sum))

plt.plot([i[0] for i in loss_list],[i[1] for i in loss_list])
plt.show()

最终accuracy可以到0.98。
训练loss曲线如下:
PyTorch构建网络示例:LeNet-5_第2张图片

你可能感兴趣的:(深度学习,#,计算机视觉,CV,#,深度学习框架)